### Several results on derivations of formal triangular matrix rings

HUANG Shu-liang

1. School of Mathematics and Finance, Chuzhou University, Chuzhou 239000, Anhui, China
• Received:2014-09-06 Revised:2015-08-22 Online:2015-10-20 Published:2015-10-21

Abstract: Let A,B be commutative rings with identity, M a nonzero (A,B)-bimodule and D be a derivation of formal triangular matrix ring
Tri(A,M,B)={(a0 mb)|aA, mM, bB}.
If D(Xm)=(D(X))n or D((XY)n)=D(Xn)D(Yn) for all X,Y∈Tri(A,M,B),where m,n≥1 are fixed integers, then D=0.

CLC Number:

• O153.3
 [1] HAGHANY A,VARAJAN K. Study of formal triangular matrix rings[J]. Comm Algebra, 1999, 27(11):5507-5525. [2] 谢乐平,曹佑安.形式三角矩阵环的导子和自同构[J]. 数学杂志, 2006,26(2):165-170. XIE Leping, CAO Youan. Derivations and automorphisms of formal triangular matrix rings [J]. J Math, 2006, 26(2):165-170. [3] GUO Ying, LI Xia, MA Jing. Certain pair of derivations on a triangular algebra[J]. Comm Math Res, 2014, 30(3):265-272. [4] 李霞,孙成侠,马晶. 三角代数上导子的两个结论[J]. 吉林大学学报:理学版,2014,52(4):730-732. LI Xia, SUN Chengxia, MA Jing. Two results on derivations of triangular algebras[J]. Journal of Jilin University: Science Edition, 2014, 52(4):730-732. [5] BELL H E, KAPPE L C. Rings in which derivations satisfy certain algebraic conditions[J]. Acta Math Hungar,1989, 53(3-4):339-346. [6] REHMAN N. On generalized derivations as homomorphisms and anti-homomorphisms[J]. Glas Mat, 2004, 39(1):27-30. [7] HERSTEIN I N. Topics in ring theory[M]. Chicago: Univ Chicago Press, 1969. [8] HERSTEIN I N. Power maps in rings[J]. Michigan Math J, 1961, 8:29-32. [9] SHARF A, QUADRI M A. On commutativity of rings with some polynomial constraints[J]. Bull Austral Math Soc, 1990, 41:201-206. [10] ALI S, SHARF A. Commutativity of rings involving additive mappings[J]. Quaestiones Mathematicae, 2014, 37:215-229.
 [1] LIU Li-jun. Characterizations and properties of triple-δ-derivation in Boolean algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 95-99. [2] LIU Hui-zhen, XIN Xiao-long, WANG Jun-tao. On derivations of monadic MV-algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 53-60. [3] LI Jun, ZHANG Jian-hua, CHEN Lin. Dual module Jordan derivations and dual module generalized derivations of triangular Banach algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 76-80. [4] FENG Min1, XIN Xiao-long1*, LI Yi-jun1,2. On f derivations and g derivations of MV-algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 50-56. [5] LIU Dan, ZHANG Jian-hua*. Characterizations of ξ-Lie derivations of B(X) [J]. J4, 2013, 48(8): 41-44. [6] JIANG Jing-lian. The derivations from the Lie algebra of derivations for  quantum torus to its modules [J]. J4, 2013, 48(6): 46-50. [7] HU Li-xia, ZHANG Jian-hua. Lie higher derivable mappings of triangular algebras at zero points [J]. J4, 2013, 48(4): 5-9. [8] PENG Dong-xia, ZHANG Jian-hua. Characterizations of a pair of generalized derivations on nest algebras [J]. J4, 2013, 48(10): 5-8. [9] JI Pei-sheng, SUN Xiao-lu, JIANG Hua. Jordan derivations of Jordan algebras [J]. J4, 2012, 47(4): 1-4. [10] CAO Zong-xia, ZHANG Jian-hua. Additive Jordan derivable maps of certain rings [J]. J4, 2012, 47(4): 5-10. [11] ZHANG Fang-juan. Generalized *-Lie derivable mappings [J]. J4, 2012, 47(4): 37-41. [12] YU Wei-yan1,2， ZHANG Jian-hua1. Generalized Jordan derivations of full matrix algebras [J]. J4, 2010, 45(4): 86-89. [13] ZHANG Fang-Juan, PANG Yong-Feng, ZHANG Jian-Hua, ZHU Xin-Hong, JI Guo-Xing. Lie-* derivations on factor von Neumann algebras [J]. J4, 2010, 45(2): 58-60. [14] . Orthogonal derivable mappings on  B(H) [J]. J4, 2009, 44(6): 4-6. [15] SUN Liang-Ji. Characterizations of the stability of generalized Jordan-derivations and Jordan-homomorphisms [J]. J4, 2008, 43(12): 77-79.
Viewed
Full text

Abstract

Cited

Shared
Discussed