JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (04): 90-94.doi: 10.6040/j.issn.1671-9352.0.2014.403

Previous Articles    

The new properties of core inverse of matrices

LUO Gao-jun, ZUO Ke-zheng, ZHOU Liang   

  1. School of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, Hubei, China
  • Received:2014-09-10 Revised:2014-12-01 Online:2015-04-20 Published:2015-04-17

Abstract: Several new properties and characteristics of core inverse,the necessary and sufficient conditions of core inverse are given by the decomposition of Σ-K-L of the matrix.

Key words: core inverse, generalized inverse, decomposition of Σ-K-L, EP matrix

CLC Number: 

  • O152.2
[1] WANG Guorong, WEI Yimin, QIAO Sansheng.Generalized inverses: theory and computations[M]. Beijing: Science Press, 2004.
[2] BEN-ISRAEL A, GREVILLE T N E.Generalized inverses[M]. New York: Springer-Verlag, 2003.
[3] DRAZIN M P. Natural structures on semigroups with involution[J]. Bull Amer Math Soc, 1978, 84:139-141.
[4] MITRA S K. Noncore square matrices miscellany[J]. Linear Algebra Appl, 1996, 249:249-260.
[5] TIAN Yongge, WANG Hongxing. Characterizations of EP matrices and weighted-EP matrices[J]. Linear Algebra Appl, 2011, 434:1295-1318.
[6] BENÍTEZ J, Rako?evi?V. Canonical angles and limits of sequences of EP and co-EP matrices[J]. Applied Mathematics and Computation, 2012, 218:8503-8512.
[7] HARTWIG R E, KATZ I J. On products of EP matrices[J]. Linear Algebra Appl, 1997, 252:339-345.
[8] HARTWIG R E, SPINDELBÖCK K. Matrices for which A* and A+ commute[J]. Linear Multilinear Algebra, 1984, 14:241-256.
[9] BAKSALARY O M, STYAN G P H, TRENKLER G. On a matrix decomposition of Hartwig and Spindelböck[J]. Linear Algebra Appl, 2009, 430:2798-2812.
[10] BAKSALARY O M, TRENKLER G. Core inverse of matrices[J]. Linear Multilinear Algebra, 2010, 58:681-697.
[11] BENÍTEZ J, LIU Xiaoji. Expressions for generalized inverses of square matrices[J]. Linear Multilinear Algebra, 2013, 61:1536-1554.
[12] PRASAD K M, MOHANA K S. Core-EP inverse[J]. Linear Multilinear Algebra, 2014, 62:792-802.
[13] BAKSALARY O M, TRENKLER G. On k-potent matrices[J]. Electronic Journal of Linear Algebra, 2013, 26:446-470.
[1] ZHENG Chan, LI Han-yu. Generalized singular value decompositions with respect to Semi-definite inner product [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 81-86.
[2] LIU Ni. On (P,Q) outer generalized inverse in Hilbert space#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 90-94.
[3] LI Jing, HE Cheng-yuan. A fast algorithm for finding the inverse and generlized inverse of the first and the last difference circulant matrices [J]. J4, 2013, 48(6): 96-99.
[4] DUAN Ying-tao. The reverse order law for {1,3,4}-inverse of the product of two operators [J]. J4, 2012, 47(4): 53-56.
[5] ZHANG Feng-xia1, LI Ying1,2, ZHAO Jian-li1. The reverse order law for {1,2,3}-inverse and {1,2,4}-inverse of products of two matrices [J]. J4, 2011, 46(4): 78-81.
[6] YANG Wen-yan, LIU Xiao-ji*. The integral representations for the core inverses of matrices [J]. J4, 2011, 46(4): 86-89.
[7] ZHU Guang-yan1, LIU Xiao-ji2*. Matrix M-weighted right symmetry factor [J]. J4, 2011, 46(2): 114-116.
[8] YUAN Wan-gui, KONG Xiang-zhi. Weighted Moore-Penrose inverses on rings [J]. J4, 2011, 46(12): 55-59.
[9] ZHONG Jin, LIU Xiao-ji*. On the sharp ordering for Hilbert space operators [J]. J4, 2010, 45(4): 82-85.
[10] . The necessary and sufficient condition for the existence of limit lim λ→0 Y(λI+AY)-1 [J]. J4, 2009, 44(6): 10-13.
[11] YUE Jiang, CHANG Da-Wei. Preconditioned simultaneous displacement(PSD) method for rank deficient  linear systems [J]. J4, 2009, 44(10): 30-35.
[12] SONG Cai-qin,ZHAO Jian-li,LI Dong-fang . The reverse order law for (T,S,2)-inverse of a matrix semi-tensor product [J]. J4, 2008, 43(6): 71-76 .
Full text



No Suggested Reading articles found!