JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (5): 61-66.doi: 10.6040/j.issn.1671-9352.0.2015.237

Previous Articles     Next Articles

A theory research and experiment scheme on enable-control Anderson localization and delocalization based on quantum walk

REN Chun-nian, GAO Jian*   

  1. College of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China
  • Received:2015-05-20 Online:2016-05-20 Published:2016-05-16

Abstract: A controllable scheme of the Anderson localization and delocalization that is based on the existing experiment of quantum walk is proposed. By the introduction of the adjustable parameters general coin and calculation results, the theory of one and two dimensional control experimental schemes are analyzed. Based on the theoretical results, an integrated optical waveguide and optical fiber devices with controllable Anderson effect experiment scheme is designed. The numerical simulation results show that the localization and delocalization is controlled by electronic polarizer and the rationality of the proposed scheme.

Key words: quantum walk, Anderson localization, universal operator, quantum simulator

CLC Number: 

  • O431.2
[1] ANDERSON P W. Absence of diffusion in certain random lattices[J]. Phys Rev, 1958, 109(5):1492-1505.
[2] MACHTA J. Generalized diffusion coefficient in one-dimensional random walks with static disorder[J]. Phys Rev B, 1981, 24(9):5260-5269.
[3] CRESPI A, OSELLAME R, RAMPONI R. Anderson localization of entangled photons in an integrated quantum walk[J].Nature Photonics, 2013, 7(4):322-328.
[4] SCHREIBER A, CASSEMIRO K N, POTOEK V.Photons walking the line: a quantum walk with adjustable coin operations[J].Phys Rev Lett, 2010, 104(5):050502-050506.
[5] SANSONI L, SCIARRINO F, VALLONE G.Two-particle bosonic-fermi onic quantum walk via integrated photonics[J].Phys Rev Lett, 2012, 8(1):010502-010507.
[6] REN Chunnian, SHI Peng, LIU Kai, et al. Effects of initial states on continuous-time quantum walk in the optical waveguide array[J]. Acta Phys Sin, 2013, 62(9):090301-090314.
[7] TREGENNA B, FLANAGAN W, MAILE R, et al.Controlling discrete quantum walks: coins and initial states[J].New J Phys, 2003, 5(1):8301-8319.
[8] CHILDS A M, GOLDSTONE J.Spatial search by quantum walk[J].Phys Rev A, 2004, 70(2):022314-022325.
[9] AMBAINIS A. Quantum walks and their algorithmic applications[J]. International Journal of Quantum Information, 2003, 1(4):507-518.
[10] VENEGAS-ANDRACA S E. Quantum walks: a comprehensive review[J]. Quantum Information Processing, 2012, 11(5):1015-1106.
[11] STREKALOV D V, KOWLIGY A S, HUANG Y P, et al. Progress towards interaction-free all-optical devices[J]. Physical Review A, 2014, 89(6):063820-063823.
[12] SANSONI L, SCIARRINO F, VALLONE G, et al. Two-particle bosonic-fermionic quantum walk via integrated photonics[J]. Phys Rev Lett, 2012, 108(1):010502-010507.
[13] DE NICOLA F, SANSONI L, CRESPI A, et al. Quantum simulation of bosonic-fermionic noninteracting particles in disordered systems via a quantum walk[J]. Phys Rev A, 2014, 89(3):032322-032325.
[14] INUI N, KONISHI Y, KONNO N.Localization of two-dimensional quantum walks[J].Phys Rev A, 2004, 69(5):052323-052332.
[15] BACH E, COPPERSMITH S, GOLDSCHEN M P, et al. One-dimensional quantum walks with absorbing boundaries[J]. Journal of Computer and System Sciences, 2004, 69(4):562-592.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!