JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (5): 58-69.doi: 10.6040/j.issn.1671-9352.0.2016.408

Previous Articles     Next Articles

The study of the supply chain network equilibrium model with retailers inequity aversion behavior

DUAN Zheng-yu, ZHOU Yan*, ZHANG Hua-min, XU Ming-jiao   

  1. Department of Management Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2016-08-30 Online:2017-05-20 Published:2017-05-15

Abstract: The decision makers inequity aversion behavior was embedded into the supply chain network equilibrium problems. The supply chain network was composed of many equity-neutral manufacturers, inequity-averse retailers and demand markets. Based on the inequity aversion theory, the retailers utility function was established, and the equilibrium conditions of all decision-makers and the supply chain network were modeled based on the variational inequality and the complementary theory. The results show that the utility of the retailer, who has advantageous or disadvantageous inequity-averse behavior, is lower than that of the equity-neutral retailer. Moreover, the transaction quantity and the utility of the retailer both decrease with the increase of the inequity-averse coefficient. Finally, numerical examples are solved to prove the above conclusions.

Key words: supply chain network, inequity aversion, variational inequality

CLC Number: 

  • F274
[1] TVERSKY A, KAHNEMAN D. Prospect theory: an analysis of decision under risk[J]. Econometrica, 1979, 47(2):263-291.
[2] KAHNEMAN D, TVERSKY A. Advances in prospect theory: cumulative representation of uncertainty[J]. Journal of Risk and Uncertainty, 1992, 5(4):297-323.
[3] LOOMES G, SUGDEN R. Regret theory: an alternative theory of rational choice under uncertainty[J]. Economic Journal, 1982, 92(368):805-24.
[4] KAHNEMAN D, THALER R H. Fairness and the assumptions of economics[J]. Journal of Business, 1986, 59(4):285-300.
[5] BERG J, DICKHAUT J, MCCABE K. Trust, reciprocity, and social history[J]. Games and Economic Behavior, 1995, 10(1):122-142.
[6] GUTH W, SCHMITTBERGER R, SCHWARZE B. An experimental analysis of ultimatum bargaining[J]. Journal of Economic Behavior and Organization, 2010, 3(4):367-388.
[7] FEHR E, SCHMIDT K M. A theory of fairness, competition and cooperation[J]. Quarterly Journal of Economics, 1999, 114(3):817-868.
[8] BOLTON G. A comparative model of bargaining: theory and evidence[J]. American Economic Review, 1991, 81(5):1096-1136.
[9] KONRAD K A, LOMMERUD K E. Relative standing comparisons, risk taking and safety regulations[J]. Journal of Public Economics, 1993, 51(3):345-358.
[10] CALISKAN-DEMIRAG O, CHEN Youhua, LI Jianbin. Channel coordination under fairness concerns and nonlinear demand[J]. European Journal of Operational Research, 2010, 207(3):1321-1326.
[11] CHOI S, MESSINGER P R. The role of fairness in competitive supply chain relationships: an experimental study[J]. European Journal of Operational Research, 2016, 251(3):798-813.
[12] LI Qinghua, LI Bo. Dual-channel supply chain equilibrium problems regarding retail services and fairness concerns[J]. Applied Mathematical Modelling, 2016, 40(15):7349-7367.
[13] QIN Fei, MAI Feng, MICHAEL J, et al. Supply-chain performance anomalies: fairness concerns under private cost information[J]. European Journal of Operational Research, 2016, 252(1):170-182.
[14] ZHOU Yanju, BAO Maojing, CHEN Xiaohong, et al. Co-op advertising and emission reduction cost sharing contracts and coordination in low-carbon supply chain based on fairness concerns[J]. Journal of Cleaner Production, 2016, 133:402-413.
[15] NIE Tengfei, DU Shaofu. Dual-fairness supply chain with quantity discount contracts[J]. European Journal of Operational Research, 2017, 258(2):491-500.
[16] 杜少甫, 杜婵, 梁樑, 等. 考虑公平关切的供应链契约与协调[J]. 管理科学学报, 2010,13(11):41-48. DU Shaofu, DU Chan, LIANG Liang, et al. Supply chain coordination considering fairness concerns[J]. Journal of Management Sciences in China, 2010, 13(11):41-48.
[17] 杜少甫, 朱贾昂, 高冬,等. Nash讨价还价公平参考下的供应链优化决策[J]. 管理科学学报, 2013, 16(3):68-72. DU Shaofu, ZHU Jiaang, GAO Dong, et al. Optimal decision-making for Nash bargaining fairness concerned newsvendor in two-level supply chain[J]. Journal of Management Sciences in China, 2013, 16(3):68-72.
[18] 张克勇, 吴燕, 侯世旺. 具公平关切零售商的闭环供应链差别定价策略研究[J]. 中国管理科学, 2014, 22(3):51-58. ZHANG Keyong, WU Yan, HOU Shiwang. Differential pricing strategy of considering retailers fairness concerns in the closed-loop supply chain[J]. Chinese Journal of Management Science, 2014, 22(3):51-58.
[19] 丁川, 陈璐. 考虑风险企业家有公平偏好的风险投资激励机制——基于显性努力和隐性努力的视角[J]. 管理科学学报, 2016, 19(4):104-117. DING Chuan, CHEN Lu. Incentive mechanism for venture investment when venture entrepreneurs have fairness preferences-from explicit efforts and implicit efforts perspectives[J]. Journal of Management Sciences in China, 2016, 19(4):104-117.
[20] 石松, 颜波, 石平. 考虑公平关切的自主减排低碳供应链决策研究[J]. 系统工程理论与实践, 2016, 36(12):3079-3091. SHI Song, YAN Bo, SHI Ping. Pricing and coordination decisions in autonomous reduction low-carbon supply chain with fairness concerns[J]. System Engineering Theory and Practice, 2016, 36(12):3079-3091.
[21] NAGURNEY A, DONG June, ZHANG Ding. A supply chain network equilibrium model[J]. Transportation Research Part E: Logistics and Transportation Review, 2002, 38(5):281-303.
[22] DONG June, ZHANG Ding, Nagurney A. A supply chain network equilibrium model with random demand[J]. European Journal of Operational Research, 2004, 156(1):194-212.
[23] YANG Guangfen, WANG Zhiping, LI Xiaoqiang. The optimization of the closed-loop supply chain network[J]. Transportation Research Part E: Logistics and Transportation Review, 2009, 45(1):16-28.
[24] QIANG Qiang, KE Ke, ANDERSON T, et al. The closed-loop supply chain network with competition, distribution channel investment, and uncertainties[J]. Omega, 2013, 41(2):186-194.
[25] 张铁柱, 刘志勇, 滕春贤. 多商品流供应链网络均衡模型的研究[J]. 系统工程理论与实践, 2005, 25(7):61-66. ZHANG Tiezhu, LIU Zhiyong, TENG Chunxian. A multi-commodity flow supply chain network equilibrium model[J]. System Engineering Theory and Practice, 2005, 25(7):61-66.
[26] 滕春贤, 姚锋敏, 胡宪武. 具有随机需求的多商品流供应链网络均衡模型的研究[J]. 系统工程理论与实践, 2007, 27(10):77-83. TENG Chunxian, YAO Fengmin, HU Xianwu. Study on multi-commodity flow supply chain network equilibrium model with random demand[J]. System Engineering Theory and Practice, 2007, 27(10):77-83.
[27] 周岩, 蒋京龙, 孙浩, 等. 面向能源和低碳发展的多准则供应链网络均衡[J]. 系统工程学报, 2014, 29(5):652-661. ZHOU Yan, JIANG Jinglong, SUN Hao, et al. Multicriteria supply chain network equilibrium with energy and low carbon development[J]. Journal of Systems Engineering, 2014, 29(5):652-661.
[28] 杨玉香, 吴增源, 黄祖庆. 考虑技术投资的供应链网络下可交易污染排放许可均衡问题[J]. 中国管理科学, 2016, 24(4):74-82. YANG Yuxiang, WU Zengyuan, HUANG Zuqing. Marketable pollution permits equilibrium problem in supply chain network with technological investment[J]. Chinese Journal of Management Science, 2016, 24(4):74-82.
[29] 胡劲松, 赵光丽. 具有损失规避零售商的模糊供应链网络均衡[J]. 控制与决策, 2014, 29(10):1899-1906. HU Jinsong, ZHAO Guangli. Supply chain network equilibrium with loss-averse retailers under fuzzy demand[J]. Control and Decision, 2014, 29(10):1899-1906.
[30] KORPELEVICH G M. The extragradient method for finding saddle points and other problems[J]. Matekon, 1977, 13:35-49.
[1] ZHOU Yan, SUN Hao, WANG Jing-jing, HAN Rui-jing, JIANG Jing-long. Multi-period closed-loop supply chain network equilibrium under uncertainty and the resulting demand satisfaction [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 38-49.
[2] XU Bing, XIONG Yong. Research on the decision models of supply chain network with n-2 structure and inventorydependent demand [J]. J4, 2012, 47(12): 14-21.
[3] . Modified threestep iterative method for solving variational inequalities [J]. J4, 2009, 44(6): 69-74.
Full text



No Suggested Reading articles found!