JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (5): 18-24.doi: 10.6040/j.issn.1671-9352.0.2016.577

Previous Articles     Next Articles

Supported ruthenium-based nanostructures toward catalytic oxidation of volatile organic compounds

PANG Jin-ding1,2, LI Jia-qi1,2, FENG Yan1,2, CHEN Yun-fa1, YANG Jun1*   

  1. (1. State Key Laboratory of Multi-Phase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-12-09 Online:2017-05-20 Published:2017-05-15

Abstract: CeO2 and γ-Al2O3-supported core-shell Ag-Ru and hollow Ru nanoparticles are prepared by a seed-mediated growth method and an appropriate post-treatment. The catalytic tests of benzene oxidation show that the core-shell Ag-Ru nanoparticles have better activities than those of hollow Ru nanostructures. In specific, the core-shell Ag-Ru nanoparticles supported on CeO2 substrates have T20 and T90 as low as 153.8 ℃ and 170.4 ℃, respectively. The XPS and H2-TPR analyses confirm that the core-shell Ag-Ru nanoparticles have more metallic Ru component in their particle surface, which may account for the high performance for oxidation of benzene.

Key words: Ru nanoparticles, benzene, catalytic oxidation, core-shell, seed-mediated growth, hollow

CLC Number: 

  • TQ426.6
[1] LIOTTA L F. Catalytic oxidation of volatile organic compounds on supported noble metals[J]. Applied Catalysis B-Environmental, 2010, 100(3/4):403-412.
[2] HUANG H, XU Y, FENG Q, et al. Low temperature catalytic oxidation of volatile organic compounds:A review[J]. Catalysis Science & Technology, 2015, 5(5):2649-2669.
[3] HE Z, LI G, CHEN J, et al. Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops[J]. Environment International, 2015, 77:85-94.
[4] VILLANUEVA F, TAPIA A, AMO-SALAS M, et al. Levels and sources of volatile organic compounds including carbonyls in indoor air of homes of Puertollano, the most industrialized city in central Iberian Peninsula. Estimation of health risk[J]. International Journal of Hygiene and Environmental Health, 2015, 218(6):522-534.
[5] ZHANG Z, WANG X, ZHANG Y, et al. Ambient air benzene at background sites in Chinas most developed coastal regions: Exposure levels, source implications and health risks[J]. Science of Total Environment, 2015, 511:792-800.
[6] TANG X, BAI Y, DUONG A, et al. Formaldehyde in China: Production, consumption, exposure levels, and health effects[J]. Environment International, 2009, 35(8):1210-1224.
[7] LI W B, WANG J X, GONG H. Catalytic combustion of VOCs on non-noble metal catalysts[J]. Catalysis Today, 2009, 148(1-2):81-87.
[8] 李东艳,刘海弟,陈运法. 氧化锰八面体分子筛的合成及其对苯催化氧化性能[J]. 环境科学,2011,32(12):3657-3661. LI Dongyan, LIU Haidi, CHEN Yunfa. Synthesis of manganese oxide octahedral molecular sieve and their application in catalytic oxidation of benzene[J]. Environmental Science, 2011, 32(12):3657-3661.
[9] 徐秋建,王者,莫金汉,等. 热催化蜂窝降解室内VOCs实验研究[J]. 工程热物理学报,2011,32(8):1406-1408. XU Qiujian, WANG Zhe, MO Jinhan, et al. Experimental study on the performance of indoor VOC removal by thermal catalytic honeycombs[J]. Journal of Engineering Thermophysics, 2011, 32(8):1406-1408.
[10] SCIRE S, LIOTTA L F. Supported gold catalysts for the total oxidation of volatile organic compounds[J]. Applied CatalysisB-Environmental, 2012, 125:222-246.
[11] 左树锋,周仁贤,齐陈泽. 粘土孔结构及添加铈对于催化剂上苯吸附-脱附-催化氧化性能的影响[J]. 中国稀土学报,2012,30(2):192-198. ZUO Shufeng, ZHOU Renxian, QI Chenze. Effects of clay pore structure and addition of cerium on adsorption/desorption and catalytic oxidation of benzene[J]. Journal of the Chinese Society of Rare Earths, 2012, 30(2):192-198.
[12] LIOTTA L F, WU H, PANTALEO G, et al. Co3O4 nanocrystals and Co3O4-MOx binary oxides for CO, CH4 and VOC oxidation at low temperatures:A review[J]. Catalysis Science & Technology, 2013, 3(12):3085-3102.
[13] 丁梦林,张思财,吕宁宁,等. Pt-Ce掺加对Cu/Al2O3催化剂结构及性能的影响及其用于苯催化氧化的研究[J]. 中国稀土学报,2013,31(3):289-295. DING Menglin, ZHANG Sicai, LÜ Ningning, et al. Influence of Pt-Ce on structure and performance of Cu/Al2O3 and its application in catalytic oxidation of benzene[J]. Journal of the Chinese Society of Rare Earths, 2013, 31(3):289-295.
[14] LI J, LIU H, DENG Y, et al. Emerging nanostructured materials for the catalytic removal of volatile organic compounds[J]. Nanotechnology Reviews, 2016, 5(1):147-181.
[15] SOLSONA B, PÉREZ-CABERO M, VÁZQUEZ I, et al. Total oxidation of VOCs on Au nanoparticles anchored on Co doped mesoporous UVM-7 silica[J]. Chemical Engineering Journal, 2012, 187:391-400.
[16] MA L, WANG D, LI J, et al. Ag/CeO2 nanospheres:Efficient catalysts for formaldehyde oxidation[J]. Applied Catalysis B-Environmental, 2014, 148:36-43.
[17] CHEN C, WANG X, ZHANG J, et al. Superior performance in catalytic combustion of toluene over KZSM-5 zeolite supported platinum catalyst[J]. Catalysis Letters, 2014, 144(11):1851-1859.
[18] TABAKOVA T, ILIEVA L, PETROVA P, et al. Complete benzene oxidation over mono and bimetallic Au-Pd catalysts supported on Fe-modified ceria[J]. Chemical Engineering Journal, 2015, 260:133-141.
[19] CHEN H, TANG M, RUI Z, et al. MnO2 promoted TiO2 nanotube array supported Pt catalyst for formaldehyde oxidation with enhanced efficiency[J]. Industrial & Engineering Chemistry Research, 2015, 54(36):8900-8907.
[20] HOSOKAWA S, FUJINAMI Y, KANAI H. Reactivity of Ru=O species in RuO2/CeO2 catalysts prepared by a wet reduction method[J]. Journal of Molecular Catalysis A:Chemical, 2005, 240(1):49-54.
[21] MIRANDA B, DÍAZ E, ORDÓNEZ S, et al. Catalytic combustion of trichloroethene over Ru/Al2O3: Reaction mechanism and kinetic study[J]. Catalysis Communications, 2006, 7(12):945-949.
[22] AOUAD S, SAAB E, AAD E A, et al. Reactivity of Ru-based catalysts in the oxidation of propene and carbon black[J]. Catalysis Today, 2007, 119(1):273-277.
[23] OKAL J, ZAWADZKI M. Catalytic combustion of butane on Ru/γ-Al2O3 catalysts[J]. Applied CatalysisB-Environmental, 2009, 89(1/2):22-32.
[24] MITSUI T, MATSUI T, KIKUCHI R, et al. Low-temperature complete oxidation of ethyl acetate over CeO2-supported precious metal catalysts[J]. Topics in Catalysis, 2009, 52(5):464-469.
[25] OKAL J, ZAWADZKI M. Influence of catalyst pretreatments on propane oxidation over Ru/γ-Al2O3[J]. Catalysis Letters, 2009, 132(1):225-234.
[26] OKAL J, ZAWADZKI M, TYLUS W. Microstructure characterization and propane oxidation over supported Ru nanoparticles synthesized by the microwave-polyol method[J]. Applied CatalysisB-Environmental, 2011, 101(3/4):548-559.
[27] OKAL J, ZAWADZKI M. Combustion of propane over novel zinc aluminate-supported ruthenium catalysts[J]. Applied CatalysisB-Environmental, 2011, 105(1/2):182-190.
[28] DAI Q, BAI S, WANG X, et al. Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts:Mechanism study[J]. Applied Catalysis B-Environmental, 2013, 129:580-588.
[29] DAI Q, BAI S, WANG J, et al. The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene[J]. Applied Catalysis B-Environmental, 2013, 142/143:222-233.
[30] HUANG H, DAI Q, WANG X. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion ofchlorobenzene[J]. Applied Catalysis B-Environmental, 2014, 158-159:96-105.
[31] LIU X, ZENG J, WANG J, et al. Catalytic oxidation of toluene over a porous Co3O4-supported ruthenium catalyst[J]. RSC Advances, 2015, 5(64):52066-52071.
[32] LIU X, ZENG J, WANG J, et al. Catalytic oxidation of methyl bromide using ruthenium-based catalysts[J]. Catalysis Science & Technology, 2016, 6(12):4337-4344.
[33] WANG J, LIU X, ZENG J, et al. Catalytic oxidation of trichloroethylene over TiO2 supported ruthenium catalysts[J]. Catalysis Communications, 2016, 76:13-18.
[34] LIU H, QU J, CHEN Y, et al. Hollow and cage-bell structured nanomaterials of noble metals[J]. Journal of the American Chemical Society, 2012, 134(28):11602-11610.
[35] LI C, LIU H, YANG J. A facile hydrothermal approach to the synthesis of nanoscale rare earth hydroxides[J]. Nanoscale Research Letters, 2015, 10:144/1-144/6.
[36] LIU H, YE F, YANG J. A universal and cost-effective approach to the synthesis of carbon-supported noble metal nanoparticles with hollow interiors[J]. Industrial & Engineering Chemistry Research, 2014, 53(14):5925-5931.
[37] QIAN K, HUANG W. Au-Pd alloying-promoted thermal decomposition of PdO supported on SiO2 and its effect on the catalytic performance in CO oxidation[J]. Catalysis Today, 2011, 164(1):320-324.
[38] MA L, WANG D, LI J, et al. Ag/CeO2 nanospheres:Efficient catalysts for formaldehyde oxidation[J]. Applied Catalysis B-Environmental, 2014, 148:36-43.
[39] BAI B, LI J. Positive effects of K+ ions on three-dimensional mesoporous Ag/Co3O4 catalyst for HCHO oxidation[J]. ACS Catalysis, 2014, 4(8):2753-2762.
Full text



No Suggested Reading articles found!