JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (10): 88-94.doi: 10.6040/j.issn.1671-9352.0.2018.103

Previous Articles    

Improvement on the solution of pressure equation based on alternating direction in chemical flooding model

CAO Wei-dong1, DAI Tao1, YU Jin-biao1, WANG Xiao-hong2, SHI An-feng2   

  1. 1. Exploration and Development Research Institute, Shengli Oilfield Branch Company, SINOPEC, Dongying 257015, Shandong, China;
    2. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
  • Received:2018-03-15 Online:2018-10-20 Published:2018-10-09

Abstract: Based on the general chemical flooding mathematical model for numerical simulation at home and abroad, an improved alternating direction iterative algorithm for solving phase pressure equation is proposed. An alternating direction iterative scheme for three dimensional parabolic equations is constructed, and a new calculation method for the iterative parameters is proposed with the second kind boundary condition and strong heterogeneous condition which is common in reservoir simulation model and practical geological model. The numerical algorithm is realized with SLCHEM, which is a simulation software of Shengli oilfield with independent intellectual property rights. Examples tests of actual field models show that the new structure of the alternating direction iterative algorithm improves the computational speed by more than 16% compared to the original preconditioned conjugate gradient algorithm, and the calculation accuracy could meet the application demand.

Key words: chemical flooding, pressure equation, alternating direction, numerical simulation

CLC Number: 

  • O242.2
[1] DELSHAD M. UTCHEM Version 6.1 technical documentation[R]. Austin: Center for Petroleum and Geosystems Engineering, the University of Texas at Austin, 1997.
[2] DELSHAD M, HAN C, SEPEHRNOORI K, et al. Development of a three phase, fully implicit, parallel chemical flood simulator[J/OL]. Spe Reservoir Simulation Symposium, 2009. DOI: 10.2118/119002-MS.// Development of a Three Phase Fully Implicit Parallel Chemical Flood Simulator.
[3] 朱维耀. 一个改进的化学驱油组分模型模拟器[J]. 石油学报, 1992, 13(1):79-90. ZHU Weiyao. An improved chemical flooding compositional model simulator[J]. Acta Petrolei Sinica, 1992, 13(1):79-90.
[4] 刘皖露,马德胜,王强,等. 化学驱数值模拟技术[J]. 大庆石油学院学报,2012, 36(3):72-78. LIUWanlu, MA Desheng, WANG Qiang, et al. Numerical simulation for chemical flooding[J]. Journal of Daqing Petroleum Institute, 2012, 36(3):72-78.
[5] 鲜成钢,郎兆新,程浩. 三元复合驱数学模型及其应用[J]. 中国石油大学学报(自然科学版), 2000, 24(2):61-69. XIAN Chenggang, LANG Zhaoxin, CHENG Hao. Development and application of mathematical models for alkali surfactant polymer flooding[J]. Journal of the University of Petroleum, China, 2000, 24(2):61-69.
[6] 王健. 化学驱物理化学渗流理论和应用[M]. 北京:石油工业出版社,2008. WANG Jian. The physical chemistry percolation theory and application in chemical flooding[M]. Beijing: Petroleum Industry Press, 2008.
[7] 杨承志. 化学驱提高石油采收率[M]. 北京:石油工业出版社, 2007. YANG Chengzhi. Enhanced oil recovery by chemical flooding[M].Beijing:Petroleum Industry Press, 2007.
[8] 宋道万, 孙玉红,戴家林. 化学驱数值模拟软件的改进和完善[J]. 油气采收率技术, 2000, 7(2):41-44. SONG Daowan, SUN Yuhong, DAI Jialin. Improvement and perfection of the numerical simulation software of chemical flooding[J]. Oil and Gas Recovery Technology, 2000, 7(2):41-44.
[9] 袁益让,程爱杰,羊丹平. 油藏数值模拟的理论和矿场实际应用[M]. 北京:科学出版社,2016. YUAN Yirang, CHENG Aijie, YANG Danping. Theory and practical application of reservoir numerical simulation[M]. Beijing: Science Press, 2016.
[10] 袁益让. 三维强化采油数值模拟的特征差分方法[J]. 山东科学, 1995, 8(3):1-5. YUAN Yirang. Characteristic finite difference method of 3-D enhanced oil recovery simulation[J]. Shandong Science, 1995, 8(3):1-5.
[11] YUAN Yirang. The characteristics-mixed finite element method for enhanced oil recovery simulation and optimal order L~2 error estimate[J]. Chinese Science Bulletin, 1993, 38(21):1761-1766.
[12] 哈利德·阿齐兹,安东尼·塞特瑞. 油藏数值模拟[M].袁士义,王家禄,译.北京:石油工业出版社,2004. AZIZ Khalid, SETTARI Antonin. Petroleum reservoir simulation[M]. Translated by YUAN Shiyi, WANG Jialu. Beijing: Petroleum Industry Press, 2004.
[13] 杨耀忠,鲁统超,戴涛,等.二元复合驱数值模拟隐格式和应用[J]. 山东大学学报(理学版),2010, 45(8):19-26. YANG Yaozhong, LU Tongchao, DAI Tao, et al. An implicit scheme for a numerical simulation of binary combination flooding and application[J]. Journal of Shandong University(Natural Science), 2010, 45(8):19-26.
[14] 曹伟东, 戴涛, 于金彪,等.化学驱数值模拟的IMPIMC方法[J]. 山东大学学报(工学版),2015, 45(1):88-94. CAO Weidong, DAI Tao, YU Jinbiao, et al. An IMPIMC method for chemical simulation[J]. Journal of Shandong University(Engineering Science), 2015, 45(1):88-94.
[15] 曹伟东, 戴涛, 于金彪,等.非均相复合驱数值模拟方法研究与应用[J].石油与天然气地质, 2016, 37(4):606-611. CAO Weidong, DAI Tao, YU Jinbiao, et al. A numerical simulation method of heterogeneous combination flooding[J].Oil & Gas Geology, 2016, 37(4):606-611.
[16] 曹伟东.乳液表活剂驱数值模拟方法研究与应用[J]. 油气地质与采收率,2017, 24(2):58-62. CAO Weidong. Numerical simulation method research and application of emulsion surfactant[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(2):58-62.
[17] DOUGLAS J. Alternating direction methods for three space variables[J]. Numer Math, 1962, 4:41-63.
[18] 程爱杰. 平面热传导方程Douglas交替方向隐格式的稳定性与收敛性[J]. 高等学校计算数学学报, 1998, 3:265-272. CHENG Aijie. Improvement of stability and convergence for Douglas scheme in two space variables[J]. Numerical Mathematics a Journal of Chinese Universities, 1998, 3:265-272.
[19] 程爱杰. 交替方向隐格式稳定性和收敛性的改进[J]. 应用数学和力学, 1999, 20(1):71-78. CHENG Aijie. Improvement of stability and convergence of A.D.I. schemes[J]. Applied Mathematics and Mechanics, 1999, 20(1):71-78.
[1] YANG Wen-bin, LI Yan-ling. Dynamics research in a predator-prey system with a nonlinear growth rate [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(03): 80-87.
[2] GUO Lan-lan1,2, GENG Jie1, SHI Shuo1,3, YUAN Fei1, LEI Li1, DU Guang-sheng1*. Computing research of the water hammer pressure in the process of #br# the variable speed closure of valve based on UDF method [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 27-30.
[3] LI Hai-xia1,2, LI Yan-ling1. Stability and uniqueness of positive solutions for  a food chain  model with B-D functional response [J]. J4, 2013, 48(09): 103-110.
[4] LUO Ping. Alternating direction preconditioned iteration for backward Euler-Galerkin methods for groundwater pollution problem in aggregated porous media [J]. J4, 2011, 46(2): 70-77.
[5] WANG Yao. Theoretical analysis and numerical simulation of random walk under sinusoidal force field [J]. J4, 2010, 45(9): 74-78.
[6] YANG Hong-liang1, ZHANG Fu-chen2*, SHU Yong-lu2, LI Yun-chao3. The ultimate bound and positively invariant set of a new Lorenz-like chaotic system and its application in chaos synchronization [J]. J4, 2010, 45(9): 83-89.
[7] TIAN Ming-lu, LIU Yun-xian. The local discontiunous Galerkin method for Cahn-Hilliard equation [J]. J4, 2010, 45(8): 27-31.
[8] ZHANG Xing-gang,KONG Wei-shu .

Theoretical and numerical investigation of elastic string with fixed ends

[J]. J4, 2008, 43(10): 71-76 .
Full text



No Suggested Reading articles found!