JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (5): 105-113.doi: 10.6040/j.issn.1671-9352.0.2019.666

Previous Articles    

Asset pricing and simulation under the environment of jumping and mixed Gaussian process

PENG Bo, GUO Jing-jun*   

  1. School of Statistics, Lanzhou University of Finance and Economics, Lanzhou 730020, Gansu, China
  • Published:2020-05-06

Abstract: The European option pricing model is established by based on mixed sub-fractional Brownian motion in jump environment. Firstly, the partial differential equation satisfying European option can be obtained through the Delta hedging principle. Secondly, the call option, the put option pricing formula and the call-put parity formula are respectively obtained by using the quasi-conditional expectation. Then, the asset risk is further quantified by Greeks Δ, Δ, ρ, Θ, Γ, ν and the partial derivative formula forthe Hurst index H. Finally, numerical simulation show that the Hurst index H and jump intensity λ in pricing parameters have a significant impact on the value of option.

Key words: jump diffusion, sub-fractional Brownian motion, quasi-conditional expectation, option pricing, asset risk

CLC Number: 

  • F224.7
[1] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3):637-654.
[2] CHERIDITO P. Mixed fractional Brownian motion[J]. Bernoulli, 2001, 7(6):913-934.
[3] SUN L. Pricing currency options in the mixed fractional Brownian motion[J]. Physica A: Statistical Mechanics & its Applications, 2013, 392(16):3441-3458.
[4] SHOKROLLAHI F, KıLıçMAN A, MAGDZIARZ M. Pricing european options and currency options by time changed mixed fractional Brownian motion with transaction costs[J]. International Journal of Financial Engineering, 2016, 3(1):637-654.
[5] MERTON R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976, 3(1/2):125-144.
[6] LO A W, MACKINLAY A C. Stock market prices do not follow random walks: evidence from a simple specification test[J]. Review of Financial Studies, 1988, 1(1):41-66.
[7] SHOKROLLAHI F, KıLıçMAN A. Pricing currency option in a mixed fractional Brownian motion with jumps environment[J/OL]. Mathematical Problems in Engineering, 2014[2020-03-19]. https://doi.org/10.1155/2014/858210.
[8] PETERS E E. Fractal structure in the capital markets[J]. Financial Analysts Journal, 1989, 45(4):32-37.
[9] NECULA C. Option pricing in a fractional Brownian motion environment[J]. Mathematical Reports, 2002, 2(3):259-273.
[10] MURWANINGTYAS C E, KARTIKO S H, GUNARDI, et al. Option pricing by using a mixed fractional Brownian motion with jumps[J]. Journal of Physics: Conference Series, 2019(1180):012011.
[11] ROGERS L C G. Arbitrage with fractional Brownian motion[J]. Mathematical Finance, 1997, 7(1):95-105.
[12] 郭精军, 张亚芳. 次分数Vasicek随机利率模型下的欧式期权定价[J]. 应用数学, 2017,30(3):503-511. GUO Jingjun, ZHANG Yafang. European option pricing under the sub-fractional Vasicek stochastic interest rate model[J]. Applied Mathematics, 2017, 30(3):503-511.
[13] 程志勇,郭精军,张亚芳.次分数布朗运动下支付红利的欧式期权定价[J].应用概率统计,2018,34(1):37-48. CHENG Zhiyong, GUO Jingjun, ZHANG Yafang. European option pricing for paying dividends under sub-fractional Brownian motion[J]. Applied Probability and Statistics, 2018, 34(1):37-48.
[14] 肖炜麟,张卫国,徐维军. 次分数布朗运动下带交易费用的备兑权证定价[J]. 中国管理科学,2014,22(5):1-7. XIAO Weilin, ZHANG Weiguo, XU Weijun. Pricing of covered warrants with transaction costs under sub-fractional Brownian motion[J]. Chinese Journal of Management Science, 2014, 22(5):1-7.
[15] TUDOR C. Some properties of the sub-fractional Brownian motion[J]. Stochastics an International Journal of Probability and Stochastic Processes, 2007, 79(5):431-448.
[16] XU Feng, LI Runze. The pricing formulas of compound option based on the sub-fractional Brownian motion model[J]. Journal of Physics: Conference Series, 2018(1053):012027.
[1] CHEN Li, LIN Ling. Stock option pricing with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 36-41.
[2] LI Guo-cheng, WANG Ji-xia. Calibrating option pricing models with cross entropy bat algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 80-89.
[3] SHEN Guang-jun 1,2, HE Kun 3, YAN Li-tan 3. Remarks on sub-fractional Brownian motion [J]. J4, 2011, 46(3): 102-108.
[4] ZHANG Hui1, 2, MENG Wen-yu1, LAI Xiang3. Dynamic pricing model of the reload stock option with two barriers under Knightian uncertainty
— the method of option pricing based on the solution of BSDE
[J]. J4, 2011, 46(3): 52-57.
[5] CHEN Xiang-li. Vulnerable options fractional pricing model under corporate value stucture [J]. J4, 2010, 45(11): 109-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!