JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (4): 8-15.doi: 10.6040/j.issn.1671-9352.0.2021.778

Previous Articles    

An efficient spectral approximation for the transmission eigenvalue problem in spherical domains

REN Shi-xian1,2, AN Jing1*   

  1. 1. School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, Guizhou, China 2. School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, Guizhou, China
  • Published:2023-03-27

Abstract: In order to solve the interior transmission eigenvalue problems in a spherical region, an effective spectral approximation method is proposed. Firstly, a product type Sobolev space is defined, and the corresponding approximation space is constructed by using a class of orthogonal polynomials on the unit sphere. Then, by introducing an auxiliary function, the original problem is transformed into an equivalent fourth-order mixed scheme, and the variational form and discrete form of the fourth-order mixed scheme are derived. Moreover, by using the approximation property of the projection operator and Babuška-Osborn theory, the error estimation of approximation solution is proved. Finally, the implementation process of the algorithm is described in detail, and some numerical examples are given to verify the convergence and high accuracy of the algorithm.

Key words: transmission eigenvalue problem, spectral method, error estimation, numerical algorithm, spherical domain

CLC Number: 

  • O241.82
[1] COLTON D, PÄIVÄRINTA L, SYLVESTER J. The interior transmission problem[J]. Inverse Problems and Imaging, 2007, 1(1):13-28.
[2] COLTON D, KRESS R. Inverse acoustic and electromagnetic scattering theory[M]. Berlin: Springer, 1998: 93.
[3] CAKONI F, COLTON D, HADDAR H. On the determination of Dirichlet or transmission eigenvalues from far field data[J]. Comptes Rendus Mathematique, 2010, 348(7/8):379-383.
[4] CAKONI F, COLTON D, MONK P. On the use of transmission eigenvalues to estimate the index of refraction from far field data[J]. Inverse Problems, 2007, 23(2):507-522.
[5] PYNNE B P, SLEEMAN B D. The interior transmission problem and inverse scattering from inhomogeneous media[J]. SIAM Journal on Mathematical Analysis, 1991, 22(6):1755-1762.
[6] PÄIVÄRINTA L, SYLVESTER J. Transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis, 2008, 40(2):738-753.
[7] CAKONI F, HADDAR H. On the existence of transmission eigenvalues in an inhomogeneous medium[J]. Applicable Analysis, 2009, 88(4):475-493.
[8] CAKONI F, GINTIDES D, HADDAR H. The existence of an infinite discrete set of transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis, 2010, 42(1):237-255.
[9] JI X, SUN J G, TURNER T. Algorithm 922: a mixed finite element method for Helmholtz transmission eigenvalues[J]. ACM Transactions on Mathematical Software(TOMS), 2012, 38(4):1-8.
[10] SUN Jiguang. Iterative methods for transmission eigenvalues[J]. SIAM Journal on Numerical Analysis, 2011, 49(5):1860-1874.
[11] CAKONI F, MONK P, SUN J G. Error analysis for the finite element approximation of transmission eigenvalues[J]. Computational Methods in Applied Mathematics, 2014, 14(4):419-427.
[12] AN Jing, LI Huiyuan, ZHANG Zhimin. Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains[J]. Numerical Algorithms, 2020, 84(2):427-455.
[13] REN Shixian, TAN Ting, AN Jing. An efficient spectral-Galerkin approximation based on dimension reduction scheme for transmission eigenvalues in polar geometries[J].Computers & Mathematics with Applications, 2020, 80(5):940-955.
[14] LI Huiyuan, XU Yuan. Spectral approximation on the unit ball[J]. SIAM Journal on Numerical Analysis, 2014, 52(6):2647-2675.
[15] AN Jing, LUO Zhendong. A high accuracy spectral method based on min/max principle for biharmonic eigenvalue problems on a spherical domain[J]. Journal of Mathematical Analysis and Applications, 2016, 439(1):385-395.
[16] HAN Jiayu, YANG Yidu. An Hm-conforming spectral element method on multi-dimensional domain and its application to transmission eigenvalues[J]. Science China Mathematics, 2017, 60(8):1529-1542.
[1] WANG Feng-xia, XIONG Xiang-tuan. Quasi-boundary value regularization method for inhomogeneous sideways heat equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(6): 74-80.
[2] CHEN Ya-wen, XIONG Xiang-tuan. Fractional Tikhonov method of a non-characteristic Cauchy problem for a parabolic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 120-126.
[3] DING Feng-xia, CHENG Hao. A posteriori choice rule for the mollification regularization parameter for the Cauchy problem of an elliptic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 18-24.
[4] ZHOU Jian-wei1, YANG Dan-ping2*. A posteriori error estimates for Legendre-Galerkin spectral  methods in two dimensions [J]. J4, 2011, 46(11): 122-126.
[5] LU Yao1, LI De-sheng2, YANG Yang1. The Fourier spectral approximation for nonlinear SchrÖdinger equation [J]. J4, 2011, 46(1): 119-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!