您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4

• 论文 • 上一篇    下一篇

L-拓扑空间中的γ-紧性

闫 彪,何春花,孟广武,孟 晗   

  1. 聊城大学 数学科学学院, 山东 聊城 252059
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2006-10-24 发布日期:2006-10-24
  • 通讯作者: 闫 彪

γ-compactness in L-topological spaces

YAN Biao, HE Chun-hua, MENG Guang-wu, MENG Han   

  1. School of Mathematics Science, Liaocheng University, Liaocheng 252059, Shandong, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: YAN Biao

摘要: 在L-拓扑空间中引入了γ-开L-集,并利用它们的不等式给出了γ-紧性的定义,这里L是完备的DeMorgan代数。这种定义既不依赖于L的结构也不要求L是完全分配的。它也能够借助于γ-闭L-集和它们的不等式刻画。当L是完全分配DeMorgan代数时,讨论了γ-紧性的更深层特征。

关键词: L-拓扑, γ-紧性 , γ-开L-集

Abstract: In L-topological spaces, γ-open L-sets were introduced and the definition of γ-compactness was presented by inequality, where L was a complete DeMorgan algebra. This definition does not rely on the structure of basic lattice L and no distributivity was required in L. It was characterized by means of γ-closed L-sets and their inequality. The further characterizations of γ-compactness were discussed when L is a completely distributive DeMorgan algebra.

Key words: γ-compactness , γ-open L-sets, L-topology

中图分类号: 

  • O189
[1] 金秋,李令强*,孙守斌,孟广武. L-Top上的Ir-函子[J]. J4, 2011, 46(12): 124-126.
[2] 刘红平,孟广武 . L-拓扑空间中的*-拟仿紧性[J]. J4, 2008, 43(8): 38-41 .
[3] 韩红霞 . L-拓扑空间的(强)相对半紧性[J]. J4, 2008, 43(6): 64-67 .
[4] 刘红平,孟广武 . L-拓扑空间中的F*-仿紧性[J]. J4, 2008, 43(3): 75-79 .
[5] 于 娜,孟 晗,孟广武 . L-拓扑空间的Os-r连通性[J]. J4, 2008, 43(3): 87-91 .
[6] 于 跃,孟广武 . 关于L-拓扑空间的超分离性的注[J]. J4, 2008, 43(2): 44-47 .
[7] 韩红霞 . L-拓扑空间的局部S*-紧性[J]. J4, 2007, 42(12): 95-98 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!