山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (9): 11-17.doi: 10.6040/j.issn.1671-9352.1.2015.C05
• • 下一篇
曹蓉,黄金柱,易绵竹
CAO Rong, HUANG Jin-zhu, YI Mian-zhu
摘要: 为了解美国国防领域对人类语言技术的研究应用情况并探究其对我相关技术领域的启示,以美国国防先进研究项目局(defense advanced research project agency, DARPA)自成立以来的人类语言技术项目为研究对象,全面、系统地研究其在该领域的设计思想、进展及目标。其关注点可分为语音识别、机器翻译、信息检索、语言资源建设、语言技术评测及多元整合系统开发等六类。从上述类别的数量分布、预期目标及应用构想来看,DARPA人类语言技术研究的最终指向是高效率、高适应、高智能的信息检索与利用,旨在拓展美军行动范围,精简行动参与人数,提升行动速度,而其在该领域的大胆创新和紧贴实际军事任务需求的特点值得借鉴。
中图分类号:
[1] 黄晓庆, 周宇煜, 张为民, 等. 达帕的启示[M]. 北京: 科学出版社, 2012: 3. [2] 刘纪平. 多重演化神经网络在语音识别中的应用[D].武汉:武汉大学,2011: 2. LIU Jiping. Multiple evolutionary neural networks in speech recognition [D].Wuhan: Wuhan University, 2011: 2. [3] STANLEY F C, BRIAN K, LIDIA M, et al. Advances in speech transcription at IBM under the DARPA EARS program[J]. Transactions on Audio, Speech, and Language Processing, 2006, 14:1596-1608. [4] TIMIT.TIMIT [EB/OL].(2003-05-10)[2014-12-23]. https://catalog.ldc.upenn.edu.docs.LDC93SI/readme.txt. [5] MANI I, HOUSE D, KLEIN G, et al. The TIPSTER SUMMAC text summarization evaluation: final report [J].Conference on European Chapter of the Association for Computational Linguistics, 1999, 4(1):82-83. [6] DARPA.Memex(Domain-Specific Search)[EB/OL].(2014-02-09)[2015-06-07]. http://www.darpa.mil/NewsEvents/Releases/2014/02/09.aspx. [7] 孙斌. 信息提取技术概述(上)[J]. 术语标准化与信息技术, 2002(3): 28-32. SUN Bin. A Summarization of information extraction(1)[J]. Terminology Standardization & Information Technology, 2002(3): 28-32. [8] 陆铭. WEB2.0网络热点发现与个性化检索研究[D]. 合肥:中国科学技术大学, 2012. LU Ming. Research on network hotspot detection in Web 2.0 and personalized information retrieval[D]. Hefei:University of Science and Technology of China, 2012. [9] 赵丹群. 浅析TREC平台的评测项目机制[J]. 情报理论与实践, 2014,37(10): 121-124,144. ZHAO Danqun. An elementary analysis of tracks structure of TREC platform [J]. Information Studies:Theory & Application, 2014, 37(10): 121-124+144. [10] DUC. Introduction [EB/OL].(2010-11-17)[2014-12-23]. http://duc.nist.gov/. [11] 刘德喜. 基于基本要素的多文档自动文摘研究[D]. 武汉:武汉大学, 2007. LIU Dexi. Multi-document summarization based on basic element[D]. Wuhan: Wuhan University, 2007. [12] DARPA.DARPA initiates overarching language translation research publishes broad agency announcement for broad operational language translation(BOLT)program [EB/OL].(2011-04-19)[2014-12-23].http://www.darpa.mil/NewsEvents/Releases/2011/2011/04/19-DARPA-initiates-overarching-language-translation-research-Publishes-Broad-Agency-Announcement-for-Broad-Operational-Language-Translation-program.aspx. [13] DARPA.Broad Operational language translation(BOLT)[EB/OL].(2011-04-19)[2014-12-23]. http://www.darpa.mil/Our-Work/I2O/Programs/Broad-Operational-Language-Translation-%28BO-LT%29.aspx. [14] DARPA. DARPA-BAA-12-47: deep exploration and filtering of text(DEFT)[EB/OL].(2012-06-07)[2014-12-23]. https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=1fc65bccd0-aa08abdff35bffc1ce8867&-cview=0. [15] DARPA. Deep exploration and filtering of text(DEFT)[EB/OL].(2012-06-07)[2014-12-23]. http://www.darpa.mil/Our-Work/I2O/Programs/Deep-Exploration-and-Filtering-of-Text-(DEFT).aspx. [16] DARPA. Can automated deep natural-language analysis unlock the power of inference? [EB/OL].(2012-05-03)[2014-12-23]. http://www.darpa.mil/NewsEvents/Releases/2012/05/03a.aspx. [17] DORR B. Deep exploration and filtering of text(DEFT)[EB/OL].(2012-03-18)[2014-12-23]. https://www.fbo.gov/utils/view?id=9645b2e015a72-8609daff66561339622 DARPA-BAA-12-47-(DEFT).pdf. [18] BOYAN O. Low resource lnguages for emergent Incidents[EB/OL].(2014-11-15)[2015-06-14]. https://www.fbo.gov/utils/view?id=d1339e87c15cb9e20-c97676d1e717752 DARPA-BAA-15-04-LORELEI.pdf. [19] 贾珍珍,曾华锋,刘戟锋. 美国颠覆性军事技术的预研模式、管理与文化——以美国国防高级研究计划局(DARPA)为例[J]. 自然辩证法研究,2016(1):41-45. JIA Zhenzhen, ZENG Huafeng, LIU Jifeng. The pre-study mode, management and culture of disruptive military technologies: with the defense advanced research projects agency as a case[J]. Studies in Dialectics of Nature, 2016(1): 41-45. |
[1] | 王凯,洪宇,邱盈盈,王剑,姚建民,周国栋. 一种查询意图边界检测方法研究[J]. 山东大学学报(理学版), 2017, 52(9): 13-18. |
[2] | 张文雅,宋大为,张鹏. 面向垂直搜索基于本体的可读性计算模型[J]. 山东大学学报(理学版), 2016, 51(7): 23-29. |
[3] | 孟烨,张鹏,宋大为. 探索数据集特征与伪相关反馈的平衡参数之间的关系[J]. 山东大学学报(理学版), 2016, 51(7): 18-22. |
[4] | 李胜东, 吕学强, 孙军, 施水才. Lucene全文索引效率的改进[J]. 山东大学学报(理学版), 2015, 50(07): 76-79. |
[5] | 许洁萍1,殷宏宇1,范子文2. 基于近似子乐句的翻唱歌曲识别研究[J]. J4, 2013, 48(7): 68-71. |
[6] | 孙静宇,陈俊杰,余雪丽,李鲜花. 协同Web搜索综述[J]. J4, 2011, 46(5): 9-15. |
[7] | 庞观松,张黎莎,蒋盛益*,邝丽敏,吴美玲. 一种基于名词短语的检索结果多层聚类方法[J]. J4, 2010, 45(7): 39-44. |
[8] | 王太峰,袁平波,荚济民,俞能海 . 基于新闻环境的人物肖像检索[J]. J4, 2006, 41(3): 5-10 . |
[9] | 曹 瑛,王明文,陶红亮 . 基于Markov网络的检索模型[J]. J4, 2006, 41(3): 126-130 . |
[10] | 王卫东,宋 丹,宋人杰 . 基于分解的向量空间模型的Web新闻信息检索[J]. J4, 2006, 41(3): 135-138 . |
[11] | 何 靖 . 一种问答式检索系统布尔查询生成方法[J]. J4, 2006, 41(3): 13-17 . |
[12] | 宋春芳,石冰 . 一种基于关联规则的搜索引擎结果聚类算法[J]. J4, 2006, 41(3): 61-65 . |
[13] | 高 翔,王 敏 . 模糊聚类算法在Web信息搜索中的应用[J]. J4, 2006, 41(3): 11-12 . |
[14] | 万海平,何华灿 . 基于谱图的维度约简及其应用[J]. J4, 2006, 41(3): 58-60 . |
[15] | 胡俊刚,董守斌,陈晓志,张元丰 . 基于URL类型优先级的入口页面查询算法[J]. J4, 2006, 41(3): 76-80 . |
|