您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4

• 论文 • 上一篇    下一篇

双枝模糊集并-表现定理

刘纪芹1,2   

  1. 1. 山东大学数学与系统科学学院, 山东济南250100; 2. 山东财政学院统计与数理学院, 山东济南250014
  • 收稿日期:2005-07-20 修回日期:1900-01-01 出版日期:2006-10-24 发布日期:2006-10-24
  • 通讯作者: 刘纪芹

Unionrepresentation theorem of bothbranch fuzzy set

LIU Ji-qin1,2   

  1. 1.School of Math. and System Sci., Shandong Univ., Jinan 250100, Shandong, China;2. Department of Statistics and Mathematics, Shandong Finance Institute, Jinan 250014, Shandong, China
  • Received:2005-07-20 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: LIU Ji-qin

摘要: 建立了双枝模糊集并-表现定理,讨论了双枝模糊集的运算性质.结果表明:双枝模糊集表现定理是单枝模糊集表现定理的一般形式,单枝模糊集表现定理是双枝模糊集表现定理的特例.

关键词: 模糊集合, 集合套, 双枝模糊集并-表现定理 , 双枝模糊集

Abstract: The unionrepresentation theorem of bothbranch fuzzy set is given, and some operational properties of bothbranch fuzzy set are discussed. The results indicate that the unionrepresentation theorem of bothbranch fuzzy set is the general form of representation theorem of Zadeh fuzzy set, and the representation theorem of Zadeh fuzzy set is the special form of unionrepresentation theorem of bothbranch fuzzy set.

Key words: union-representation theorem of both-branch fuzzy set , bothbranch fuzzy set, nest of sets, fuzzy set

中图分类号: 

  • O159
[1] 刘保仓1, 刘若慧2*. 粗双枝模糊集的嵌入集的性质[J]. J4, 2010, 45(11): 79-82.
[2] 刘纪芹,郝秀梅 . 双枝模糊集表现定理对偶形式[J]. J4, 2007, 42(5): 9-13 .
[3] 李成栋,魏 荣 . 双枝模糊集的内、外积及相似性度量[J]. J4, 2007, 13(2): 72-76 .
[4] 刘若慧,刘保仓 . 粗双枝模糊集的α-嵌入[J]. J4, 2007, 42(12): 77-81 .
[5] 刘纪芹 . 单枝模糊集表现定理对偶形式[J]. J4, 2006, 41(1): 57-61 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!