您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4

• 论文 • 上一篇    下一篇

带限制条件的最短时间渡江问题

丁 梅1,冯俊娥2,王志宏1   

  1. 1. 山东电力研究院, 山东济南250002; 2. 山东大学数学与系统科学学院, 山东济南250100
  • 收稿日期:2006-06-30 修回日期:1900-01-01 出版日期:2006-10-24 发布日期:2006-10-24
  • 通讯作者: 丁 梅

The minimum time problem of crossing river with restricted conditions

DING Mei1, FENG Jun-e2 and WANG Zhi-hong1   

  1. 1. Shandong Electric Power Institute Research, Jinan 250002, Shandong, China;2. Department of Mathematics and System Science, Shandong Univ., Jinan 250100, Shandong, China
  • Received:2006-06-30 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: DING Mei

摘要: 讨论起终点一定的最短时间渡江问题,分析离散和连续情况下速度选择方案,且对连续流速情况得出一个非线性规划模型,推出其最优性条件.

关键词: 渡江问题, 速度, 非线性规划 , 角度

Abstract: In order to study the minimum time problem of crossing river with a fixed starting point and terminal point, the difference of the routing and the velocity between dispersed and continuous conditions is analyzed. After obtaining a unlinear programming model for the continuous waters velocity, the best condition and a selection tactics of velocity and algorithm are obtained.

Key words: unlinear programming , angle, velocity, problem of crossing river

中图分类号: 

  • O224
[1] 刘婷婷,陈志勇,李晓琴*,杨文志. 随机变量序列的Berry-Esseen界[J]. 山东大学学报(理学版), 2014, 49(03): 101-106.
[2] 赵泽茂1,刘洋1,张帆1,2,周建钦1,张品1. 基于角度和概率的WSN源位置隐私保护路由研究[J]. J4, 2013, 48(09): 1-9.
[3] 倪展,吴群英*,施生塔. ND序列下最近邻密度估计的强相合速度[J]. J4, 2012, 47(12): 6-9.
[4] 赵永谦1,2,梅林锋2. 一类奇异超线性椭圆方程解增长速度估计[J]. J4, 2011, 46(7): 124-126.
[5] 王娅. 广义遗传筛子及其性质分析[J]. J4, 2009, 44(12): 52-55.
[6] 张新东,王秋华 . 避免二阶导数计算的Newton迭代法的一个改进[J]. J4, 2007, 42(7): 72-76 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!