您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2010, Vol. 45 ›› Issue (11): 5-11.

• 电子技术与信息 • 上一篇    下一篇

基于公共矢量的总间隔v最小类内方差支持向量机在噪音人脸图像分类中的应用

杨冰,王士同*   

  1. 江南大学信息工程学院, 江苏 无锡 214122
  • 收稿日期:2010-04-02 出版日期:2010-11-16 发布日期:2010-11-24
  • 通讯作者: 王士同(1964-),男,教授,博士生导师,主要研究方向为模式识别、人工智能、生物信息学.
  • 作者简介:杨冰(1983-),男,硕士研究生,主要研究方向为模式识别与人工智能. Email:holmeses@163.com
  • 基金资助:

    国家高技术研究发展计划(863计划)基金资助项目(2007AA1Z158);国家自然科学基金资助项目(60704047);国家自然科学基金重大研究计划资助项目(9082002)

Total margin v minimum class variance support vector machines  based on common  vectors for noisy face classification

YANG Bing, WANG Shi-tong*   

  1. School of Information Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
  • Received:2010-04-02 Online:2010-11-16 Published:2010-11-24

摘要:

为提高噪音人脸图像分类问题中的抗噪性能,在综合最小类内方差支持向量机(minimum class variance support vector machines,MCVSVMs)和总间隔v-支持向量机(total margin v support vector machine,TM-v-SVM)的优点的基础上,提出了基于公共矢量的总间隔v最小类内方差支持向量机(Total margin v minimum class variance support vector machines based on common vectors,TM-v-M(CV)2SVMs)。受公共矢量(common vectors,CVs)的启发,引入了散度矩阵以进一步提高算法的分类性能和抗噪性能,并给出了TM-v-M(CV)2SVMs的推导过程。经实验证明,在噪音人脸图像的分类问题中,TM-v-M(CV)2SVMs获得了比MCVSVMs和TM-v-SVM更好的分类性能和抗噪性能。

关键词: 支持向量机;最小类内方差支持向量机;总间隔v-支持向量机;判别公共矢量;公共矢量;人脸识别

Abstract:

Algorithm total margin v minimum class variance support vector machines based on common vectors (TM-v-M(CV)2SVMs) were presented for noisy face recognition, which integrates the advantages of minimum class variance support vector machines(MCVSVMs)and total margin v support vector machine(TM-v-SVM). Based on common vectors (CVs), the divergence matrix was introduced to improve the classification and anti-noisy performances of noisy face classification, and TM-v-M (CV)2SVMs derivation was given. The experimental results about noisy face classification showed that the proposed TM-v-M(CV)2SVMs had better classification performance than both the MCVSVMs and TM-v-SVM.

Key words:  support vector machine; minimum class variance support vector machines; total margin v support vector machine; discriminative common vectors; common vectors; face recognition

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!