山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (09): 29-35.doi: 10.6040/j.issn.1671-9352.3.2014.232
张新猛1,2, 蒋盛益1,2, 张倩生2,3, 谢柏林1,2, 李霞2
ZHANG Xin-meng1,2, JIANG Sheng-yi1,2, ZHANG Qian-sheng2,3, XIE Bo-lin1,2, LI Xia2
摘要: 基于热传导或物质扩散理论的推荐算法首先利用网络结构得到对象间推荐关系,然后根据对象间关系预测用户喜欢的对象,而忽略了用户偏好。为了弥补这个缺陷,根据用户已选择对象的标签,利用TF-IDF方法构建用户偏好模型,以用户在预测对象标签上的平均偏好作为对该对象的偏好程度,采用加权方法与现有基于网络推荐算法混合运算。经在基准数据集MovieLens上测试表明,通过与目前效果最好的几种基于网络推荐算法进行加权混合运算,推荐结果在推荐精度、个性化、多样化等多种评价指标方面均比原有算法有明显提高。
中图分类号:
[1] ZHOU T, REN J, MEDO M, et al. Bipartite network projection and personal recommendation[J]. Physical Review E, 2007, 76(4):6116-6123. [2] ZHOU T, JIANG L L, SU R Q. Effect of initial configurationon network-based recommendation[J]. Europhys Lett, 2008, 81(5):8004-8008. [3] PAN X, DENG G S, LIU J G. Weighted bipartite network and personalized recommendation[J]. Physics Procedia, 2010, 3(5):1867-1876. [4] LIU J G, ZHOU T, WANG B H, et al. Effects of user tastes on personalized recommendation[J]. International Journal of Modern Physics C, 2009, 20(12):1925-1932. [5] ZHOU T, SU R Q, LIU R R, et al. Accurate and diverse recommendations via eliminating redundant correlations[J]. New J Phys, 2009, 11(12):3008-3026. [6] ZHANG Y C, BLATTNER M, YU Y K. Heat conduction process on community networks as a recommendation model[J]. Phys Rev Lett, 2007, 99(15):4301-4305. [7] LIU J G, ZHOU T, GUO Q. Information filtering via biased heat conduction[J]. Phys Rev E, 2011, 84(3):7101-7105. [8] QIU T, WANG T T, ZHANG Z K, et al. Heterogeneity involved network-based algorithm leads to accurate and personalized recommendations[J]. Physics and Society, 2013, arXiv:1305.7438vl. [9] ZHOU T, KUSCSIK Z, LIU J G, et al. Solving the apparent diversity accuracy dilemma of recommender systems[C]//Proceedings of the National Academy of Sciences of the United States of America. Washington: Natl Acad Sciences, 2010, 107:4511-4515. [10] SCOTT A G, BERNARDO A H. Usage patterns of collaborative tagging systems[J]. Journal of Information Science, 2006, 32(2):198-208. [11] ZHANG Z K, ZHOU T, ZHANG Y C. Tag-aware recommender systems: a state-of-the-art survey[J]. Journal of Computer Science and Technology, 2011, 26(5):767-777. [12] ZHANG Z K, LIU C, ZHANG Y C, et al. Solving the cold-start problem in recommender systems with social tags [J]. Europhysics Letters, 2010, 92(2):8002-8010. [13] MICHAEL J P, DANIEL B. Content-based recommendation systems[J]. Lecture Notes in Computer Science, 2007, 4321:325-341. [14] CANTADOR I, BELLOGN A, VALLET D. Content-based recommendation in social tagging systems[C]//Proceedings of RecSys'10.New York: ACM, 2010:237-240. [15] JIANG Shengyi, SONG Xiaoyu, WANG Hui, et al. A clustering-based method for unsupervised intrusion detections[J]. Pattern Recognition Letters, 2006, 27(7):802-810. [16] BURKE R. Hybrid Recommender systems: survey and experiments [J]. User Model User-Adap Interact, 2007, 12(4):331-370. [17] JOACHIMS T. A probabilistic analysis of the rocchio algorithm with TFIDF for text categorization[C]//Proceedings of the 14th International Conference on Machine Learning. New York: ACM, 1997:143-151. |
[1] | 杜漫,徐学可,杜慧,伍大勇,刘悦,程学旗. 面向情绪分类的情绪词向量学习[J]. 山东大学学报(理学版), 2017, 52(7): 52-58. |
[2] | 张聪,裴家欢,黄锴宇,黄德根,殷章志. 基于语义图优化算法的中文微博观点摘要研究[J]. 山东大学学报(理学版), 2017, 52(7): 59-65. |
[3] | 杨震,司书勇,李超阳. 基于用户隐式兴趣模型的信息推荐[J]. 山东大学学报(理学版), 2017, 52(1): 15-22. |
[4] | 马宇峰, 阮彤. 基于LDA及标签传播的实体集合扩展[J]. 山东大学学报(理学版), 2015, 50(03): 20-27. |
[5] | 王少鹏, 彭岩, 王洁. 基于LDA的文本聚类在网络舆情分析中的应用研究[J]. 山东大学学报(理学版), 2014, 49(09): 129-134. |
[6] | 刘璇1,许洁萍1*,陈捷2. 以Web标签为基础的相似歌曲研究[J]. J4, 2012, 47(5): 53-58. |
[7] | 刘健1,尹春霞2*,原福永3. 基于非结构化P2P网络用户模型的协同过滤推荐机制[J]. J4, 2011, 46(5): 28-33. |
|