您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (09): 13-20.doi: 10.6040/j.issn.1671-9352.3.2015.145

• 论文 • 上一篇    下一篇

面向知识级应用的多维语义本体构建

刘剑1,2, 许洪波1, 易绵竹2, 程学旗1   

  1. 1. 中国科学院计算技术研究所网络数据科学与技术重点实验室, 北京 100190;
    2. 解放军外国语学院语言工程系, 河南 洛阳 471003
  • 收稿日期:2015-03-03 修回日期:2015-07-22 出版日期:2015-09-20 发布日期:2015-09-26
  • 作者简介:刘剑(1979-),男,讲师,博士研究生,研究方向为知识工程、数据挖掘. E-mail:liujian_public@sina.com
  • 基金资助:
    国家自然科学基金资助项目(61232010,61202213);国家重点基础研究发展计划(973计划)项目(2014CB340401);国家高技术研究发展计划(863计划)项目(2012AA011003);国家科技支撑计划项目(2012BAH39B02)

Multi-dimensional semantic ontology construction oriented to knowledge-level application

LIU Jian1,2, XU Hong-bo1, YI Mian-zhu2, CHENG Xue-qi1   

  1. 1. Key Laboratory of Web Data Science & Technology, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190;
    2. Department of Language Engineering, PLA University of Foreign Languages, Luoyang 471003, Henan, China
  • Received:2015-03-03 Revised:2015-07-22 Online:2015-09-20 Published:2015-09-26

摘要: 本体作为知识的承载者被信息科学领域引入,用来解决知识表示和知识组织方面的问题。基于语义本体理论,提出了多维语义本体模型,从不同维度对世界知识进行建模。基于知识的抽象层次,在多语言、多领域知识之间建立了语义关联,在此基础上构建了多维语义本体,用于解决信息共享时语义缺乏和多语言知识关联的关键问题。对多维语义本体进行了分析和横向比较,并对将来构建过程中面临的主要问题和挑战进行了探讨。

关键词: 知识工程, 概念映射, 知识共享, 语义本体

Abstract: Ontology, as the carrier, is introduced into the field of information science. It can solve the problems of knowledge representation and knowledge organization. Based on the theory of semantic ontology, a multi-dimensional semantic ontology model was proposed, which conceptualized the world knowledge from different dimensions. It presented the abstraction level of knowledge and established the semantic relevance of knowledge among different languages and different fields. On this basis, multi-dimensional semantic ontology was constructed, which solved the key problem about the lack of semantic knowledge and multi-language relation. Furthermore, multi-dimensional semantic ontology was analyzed and horizontal compared. And the main problems and challenges in construction process in the future were discussed.

Key words: knowledge sharing, knowledge engineering, semantic ontology, conception mapping

中图分类号: 

  • TP393
[1] 李国杰,程学旗. 大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J]. 中国科学院院刊,2012, 27(6):647-657. LI Guojie, CHENG Xueqi.Research status and scientific thinking of Big Data[J]. Bulletin of the Chinese Academy of Sciences, 2012, 27(6):647-657.
[2] 王元卓,靳小龙,程学旗. 网络大数据:现状与展望[J]. 计算机学报,2013,36(6):1125-1138. WANG Yuanzhuo, JIN Xiaolong, CHENG Xueqi. Network Big Data: present and future[J]. Chinese Journal of Computers, 2013, 36(6):1125-1138.
[3] Lee T Berners. Semantic Web on XML[EB/OL]. [2014-03-01].http://www.w3.org/2000/talks/1206-xml2k-tbl.
[4] 钟秀琴,刘忠,丁盘苹. 基于混合推理的知识库的构建及其应用研究[J]. 计算机学报,2012, 35(4):761-766. ZHONG Xiuqun, LIU Zhong, DIING Panping. Construction of knowledge base on hybrid reasoning and its application[J]. Chinese Journal of Computers, 2012, 35(4):761-766.
[5] 万长林,史忠植,胡宏,等. 基于本体的语义Web服务QoS描述和发现[J]. 计算机研究与发展,2011, 48(6):1059-1065. WAN Changlin, SHI Zhongzhi, HU Hong, et al. QoS-aware semantic web service modeling and discovery [J]. Journal of Computer Research and Development, 2011, 48(6):1059-1065.
[6] Rashmi Chauhan, Rayan Goudar, Robin Sharma, et al. Domain ontology based semantic search for efficient information retrieval through automatic query expansion [C]// Proceedings of the 2013 International Conference on Intelligent Systems and Signal Processing(ISSP). New York: IEEE, 2013:397-402.
[7] STUDER R, BENJAMINS V R, FENSEL D. Knowledge engineering, principles and methods [J]. Data and Knowledge Engineering, 1998, 25(1-2):161-197.
[8] 顾芳,曹存根. 知识工程中的本体研究现状与存在问题[J]. 计算机科学,2004, 31(10):1-10. GU Fang, CAO Cungen. Ontology research and existing problems in knowledge engineering [J]. Computer Science, 2004, 31(10):1-10.
[9] SHARMA A, FORBUS KD. Automatic extraction of efficient axiom sets from large knowledge bases[C] // Proceedings of the 27th AAAI Conference on Artificial Intelligence. Cambridge: MIT Press, 2013:1248-1254.
[10] SHARMA A, FORBUS KD. Modeling the evolution of knowledge in learning systems [C] //Proceedings of the 26th AAAI Conference on Artificial Intelligence. Cambridge: MIT Press, 2012:669-675.
[11] 王桐,王磊,吴吉义,等. WordNet中的综合概念语义相似度计算方法[J]. 北京邮电大学学报,2013, 36(2):98-101. WANG Tong, WANG Lei, WU Jiyi, et al. Semantic similarity calculation method of comprehensive conceptin WordNet[J]. Journal of Beijing University of Posts and Telecommunications, 2013, 36(2):98-101.
[12] 董振东,董强,郝长伶. 知网的理论发现[J].中文信息学报,2007,21(4):3-9. Dong Zhendong, DONG Qiang, HAO Changling. Theoretical findings of HowNet[J]. Journal of Chinese Information Processing, 2007, 21(4):3-9.
[13] 张瑞霞,庄晋林,杨国增. 基于《知网》的中文信息结构消歧研究[J]. 中文信息学报,2012,26(4):43-49. ZHANG Ruixia, ZHUANG Jinlin, YANG Guozeng. Chinese message structures disambiguation based on HowNet[J]. Journal of Chinese Information Processing, 2012, 26(4):43-49.
[14] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]// Proceedings of ACM SIGMOD 2008. New York: ACM, 2008:1247-1249.
[15] AUER S, BIZER C, KOBILAROV G, et al. Dbpedia: a nucleus for a Web of open data[C] //Proceedings of the 6th International Semantic Web. New York: Springer Press, 2007:722-735.
[16] NASTASE V, STRUBE M, BORSCHINGER B, et al. WikiNet: a very large scale multi-lingual concept network[C] //Proceedings of the 7th International Conference on Language Resources and Evaluation. Valletta: LREC, 2010:1015-1022.
[17] SUCHANEK F M, KASNECI G, WEIKUM G. Yago: a core of semantic knowledge [C]// Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007:697-706.
[18] TONY Hey, STEWART Tansley, KRISTIN Tolle. The forth paradigm: data-intensive scientific discovery [M]. Redmond: Microsoft Research, 2009:11-22.
[19] SONG Yangqiu, WANG Haixun, WANG Zhongyuan, et al. Short text conceptualization using a probabilistic knowledgebase[C]// Proceedings of the 22nd International Joint Conference on Artificial Intelligence. [S.l.]: AAAI Press, 2011:2330-2336.
[20] WU Wentao, LI Hongsong, WANG Haixun, et al. Probase: a probabilistic taxonomy for text understanding[C] // Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2012.
[21] 贾君枝,刘艳玲. 顶层本体比较及评估[J]. 情报理论与实践,2007,30(3):397-400. JIA Junzhi, LIU Yanling. Comparison & evaluation of upper ontologies [J]. Journal of Chinese Information Processing, 2007, 30(3):397-400.
[22] 白如江,于晓繁,王效岳. 国内外主要本体库比较分析研究[J]. 现代图书情报技术,2011, 201(1):3-13. BAI Rujiang, YU Xiaofan, WANG Xiaoyue.The comparativeanalysis of major domestic and foreign ontology library[J].New Technology of Library and Information Service, 2011, 201(1):3-13.
[23] 孙苇如,孙乐,韩先培.基于维基百科和模式聚类的实体关系抽取方法[J]. 中文信息学报,2012,26(2):75-81. SUN Weiru, SUN Le, HAN Xianpei. A entity relation extraction method based on Wikipedia and pattern clusterin[J]. Journal of Chinese Information Processing, 2012, 26(2):75-81.
[24] 涂新辉,张红春,周琨峰,等.中文维基百科的结构化信息抽取及词语相关度计算方法[J].中文信息学报,2012,26(3):109-115. TU Xinhui, ZHANG Hongchun, ZHOU Kunfeng. Extracting structured information from Chinese Wikipedia and measuring relatedness between words [J]. Journal of Chinese Information Processing, 2012, 26(3):109-115.
[25] 贾真,杨宇飞,何大可,等.面向中文网络百科的属性和属性值抽取[J].北京大学学报:自然科学版,2014,50(1):41-47. JIA Zhen, YANG Yufei, HE Dake. et al. Attribute and attribute value extracted from Chinese online encyclopedia[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(1):41-47.
[26] 刘伟成,孙吉红. 多语言本体构建及其在跨语言信息检索中的应用[J]. 武汉科技大学学报:社会科学版,2008,10(4):73-76. LIU Weicheng, SUN Jihong. Construction of multilingual ontologies and its application in CLIR[J]. Journal of Wuhan University of Science and Technology: Social Science Edition, 2008, 10(4):73-76.
[27] 姚文琳,王存刚,任丽婕,等. 基于核心概念集的多语言Ontology [J]. 计算机应用研究,2006,23(4):28-31. YAO Wenlin, WANG Cungang, REN Lijie. et al. A multilingual Ontology based on core set of concepts[J]. Application Research of Computers, 2006, 23(4):28-31.
[28] 章成志,王惠临. 面向数字图书馆应用的多语言领域本体学习研究[J]. 图书情报工作,2011,55(2):11-15. ZHANG Chengzhi, WANG Huilin. Multilingual domain ontology learning for digital library[J]. Library and Information Service, 2011, 55(2):11-15.
[1] 李艳平,齐艳姣,张凯,魏旭光. 支持用户撤销的多授权机构的属性加密方案[J]. 山东大学学报(理学版), 2018, 53(7): 75-84.
[2] 章广志,蔡绍斌,马春华,张东秋. 最大距离可分码在网络编码纠错中的应用[J]. 山东大学学报(理学版), 2018, 53(1): 75-82.
[3] 李阳,程雄,童言,陈伟,秦涛,张剑,徐明迪. 基于流量统计特征的潜在威胁用户挖掘方法[J]. 山东大学学报(理学版), 2018, 53(1): 83-88.
[4] 赵光远,秦丰林,郭晓东. 基于P2P的网络测量云平台的设计与实现[J]. 山东大学学报(理学版), 2017, 52(12): 104-110.
[5] 黄淑芹,徐勇,王平水. 基于概率矩阵分解的用户相似度计算方法及推荐应用[J]. 山东大学学报(理学版), 2017, 52(11): 37-43.
[6] 王亚奇,王静. 考虑好奇心理机制的动态复杂网络谣言传播研究[J]. 山东大学学报(理学版), 2017, 52(6): 99-104.
[7] 陈广瑞,陈兴蜀,王毅桐,葛龙. 一种IaaS多租户环境下虚拟机软件更新服务机制[J]. 山东大学学报(理学版), 2017, 52(3): 60-67.
[8] 庄政茂,陈兴蜀,邵国林,叶晓鸣. 一种时间相关性的异常流量检测模型[J]. 山东大学学报(理学版), 2017, 52(3): 68-73.
[9] 宋元章,李洪雨,陈媛,王俊杰. 基于分形与自适应数据融合的P2P botnet检测方法[J]. 山东大学学报(理学版), 2017, 52(3): 74-81.
[10] 祝升,周斌,朱湘. 综合用户相似性与话题时效性的影响力用户发现算法[J]. 山东大学学报(理学版), 2016, 51(9): 113-120.
[11] 岳猛,吴志军,姜军. 云计算中基于可用带宽欧氏距离的LDoS攻击检测方法[J]. 山东大学学报(理学版), 2016, 51(9): 92-100.
[12] 李宇溪,王恺璇,林慕清,周福才. 基于匿名广播加密的P2P社交网络隐私保护系统[J]. 山东大学学报(理学版), 2016, 51(9): 84-91.
[13] 苏彬庭,许力,方禾,王峰. 基于Diffie-Hellman的无线Mesh网络快速认证机制[J]. 山东大学学报(理学版), 2016, 51(9): 101-105.
[14] 林丽. 基于核心依存图的新闻事件抽取[J]. 山东大学学报(理学版), 2016, 51(9): 121-126.
[15] 刘驰,闫宏飞. 基于元信息的云盘资源检索结果去重[J]. 山东大学学报(理学版), 2016, 51(7): 11-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!