您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2013, Vol. 48 ›› Issue (1): 62-67.

• 高端论坛 • 上一篇    下一篇

逆P-等价类的逆P-推理分离-还原

赵树理1,王军昌1,史开泉2   

  1. 1. 商丘师范学院数学与信息科学学院, 河南 商丘 476000; 2.山东大学数学学院,山东 济南 250100
  • 收稿日期:2012-05-24 出版日期:2013-01-20 发布日期:2013-01-15
  • 作者简介:赵树理(1962-),男,副教授,研究方向为信息系统与信息识别. Email:zhaolishuli@163.com
  • 基金资助:

    河南省基础与前沿技术研究项目(112300410056)资助;山东省自然科学基金资助项目(ZR2010AL019)

Separation-reduction on inverse packet reasoning of inverse packet equivalence class

ZHAO Shu-li1, WANG Jun-chang1, SHI Kai-quan2   

  1. 1. School of Mathematics and Information Science, Shangqiu Normal University, Shangqiu 476000, Henan, China;
     2. School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Received:2012-05-24 Online:2013-01-20 Published:2013-01-15

摘要:

 逆P-集合是把动态特性引入到有限普通集合X内(Cantor set X),改进有限普通集合X被提出的。逆P-集合是由内逆P-集合F与外逆P-集合构成的集合对;或者,(F,)是逆P-集合。逆P-集合具有动态特性。逆P-推理是逆P-集合生成的一个动态推理,它是由内逆P-推理与外逆P-推理共同构成的。利用逆P-集合和逆P-推理, 给出逆P-等价类、内逆P-等价类和外逆P-等价类概念,逆P-等价类与普通等价类的关系,逆P-等价类的逆P-推理分离-还原与分离-还原定理。在静态-动态条件下,普通等价类是逆P-等价类的特例,逆P-等价类是普通等价类的一般形式。

关键词: 逆P-集合;逆P-等价类;逆P-推理;推理分离;分离-还原定理

Abstract:

Through improving an ordinary finite cantor set X inverse packet set is introduced by bringing dynamatic feature into X. Inverse packet set consists of an internal inverse packet set F and an outer inverse packet set  which is denoted briefly by a set pair (F,). It can be reduced to an ordinary set in some situations. Inverse Preasoning is a dynamatic reasoning generated by inverse packet sets which is composed of internal inverse packet reasoning and outer inverse packet reasoning together. Utilizing inverse packet sets and inverse packet reasoning, one defines severval important concepts such as inverse packet equivalence class, internal inverse packet equivalence class and outer inverse packet equivalence class and on the other hand, one obtains a relationship between inverse packet equivalence class and ordinary equivalence calss. Finally, one achieves seperation and reduction on inverse packets equivalence class and separation-reduction theorem as well.  Under static-dynamatic conditions, ordinary equivalence class is a special case of inverse packet equivalence class and inverse packet equivalence class is a general form of the ordinary one.

Key words: inverse packet sets; inverse packet equivalence class; inverse packet reasoning; reasoning separation; separation-reduction theorem

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!