您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (11): 33-40.doi: 10.6040/j.issn.1671-9352.0.2016.250

• • 上一篇    下一篇

基于知识图谱的文本观点检索方法

马飞翔1,2,廖祥文1,2*,於志勇1,2,吴运兵1,2,陈国龙1,2   

  1. 1.福州大学数学与计算机科学学院, 福建 福州 350116;2.福建省网络计算与智能信息处理重点实验室(福州大学), 福建 福州 350116
  • 收稿日期:2016-06-07 出版日期:2016-11-20 发布日期:2016-11-22
  • 通讯作者: 廖祥文(1980— ),男,博士,副教授,研究方向为文本倾向性检索与挖掘. E-mail:liaoxw@fzu.edu.cn E-mail:457429397@qq.com
  • 作者简介:马飞翔(1991— ),男,硕士研究生,研究方向为知识图谱与观点检索. E-mail:457429397@qq.com
  • 基金资助:
    国家自然科学基金青年项目(61300105);教育部博士点基金联合资助项目(2012351410010);福建省科技重大专项项目(2013H6012);中国科学院网络数据科学与技术重点实验室开放基金课题项目(CASNDST20140X)

A text opinion retrieval method based on knowledge graph

MA Fei-xiang1,2, LIAO Xiang-wen1,2*, YU Zhi-yong1,2, WU Yun-bing1,2, CHEN Guo-long1,2   

  1. 1. School of Math and Computer Science, Fuzhou University, Fuzhou 350116, Fujian, China;
    2. Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing(Fuzhou University), Fuzhou 350116, Fujian, China
  • Received:2016-06-07 Online:2016-11-20 Published:2016-11-22

摘要: 文本观点检索旨在检索出与查询主题相关并且表达用户对主题观点的文档。由于用户查询时输入通常很短,难以准确表示查询的信息需求。知识图谱是结构化的语义知识库,通过知识图谱中的知识有助于理解用户的信息需求。因此,提出了一种基于知识图谱的文本观点检索方法。首先由知识图谱获取候选查询扩展词,并计算每个候选词扩展词分布、共现频率、邻近关系、文档集频率,然后利用4类特征通过SVM分类得到扩展词,最后利用扩展词对产生式观点检索模型进行扩展,实现对查询的观点检索。实验表明,在微博和推特两个数据集上,与基准工作对比,所提出的方法在MAP、NDCG等评价指标上均有显著的提升。

关键词: 知识图谱, 观点检索, 查询扩展

Abstract: Text opinion retrieval aims at finding relevant and opinionate documents according to a users query. User queries are usually too short to describe the information need accurately. Knowledge Graph is a structured semantic knowledge base, which the information of knowledge graph can help us to describe the information need. In this paper, we propose a text opinion retrieval method based on knowledge graph. Firstly, we get the candidate of query expansion terms by knowledge graph, and calculate four kinds of features of each candidate named term distributions, co-occurrence frequency, proximity and collection frequency. Then, we choose the expansion terms by SVM classifier with the features. Finally, we expand the generative opinion retrieval model using the expansion terms to get the opinion retrieval result. Experimental results on Sina Microblog and Twitter datasets show that our proposed method obtains significant improvements in terms of MAP and NDCG over the baseline approaches.

Key words: opinion retrieval, query expansion, knowledge graph

中图分类号: 

  • TP391
[1] OUNIS I, DE RIJKE M, MACDONALD C, et al. Overview of the TREC-2006 blog track [J]. DTIC Document, 2006.
[2] ZHANG W, YU C, MENG W. Opinion retrieval from blogs[C] // Proceedings of the 16th ACM Conference on Information and Knowledge Management. New York: ACM, 2007: 831-840.
[3] HE B, MACDONALD C, HE J, et al. An effective statistical approach to blog post opinion retrieval[C] // Proceedings of the 17th ACM Conference on Information and Knowledge Management. New York: ACM, 2008: 1063-1072.
[4] GERANI S, CARMAN M J, CRESTANI F. Proximity-based opinion retrieval[C] // Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2010: 403-410.
[5] LUO Z, OSBORNE M, WANG T. An effective approach to tweets opinion retrieval [J]. World Wide Web, 2015, 18(3):545-566.
[6] ZHANG M, YE X. A generation model to unify topic relevance and lexicon-based sentiment for opinion retrieval[C] // Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2008: 411-418.
[7] 刘峤, 李杨, 段宏 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3):582-600. LIU Qiao, LI Yang, DUAN Hong, et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53(3):582-600.
[8] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C] // Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 1247-1250.
[9] HOFFART J, SUCHANEK F M, BERBERICH K, et al. YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia[J]. Artificial Intelligence, 2013, 194(28-61).
[10] DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion[C] // Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 601-610.
[11] VRANDECIC D, KR TZSCH M. Wikidata: a free collaborative knowledgebase[J]. Communications of the ACM, 2014, 57(10):78-85.
[12] DALTON J, DIETZ L, ALLAN J. Entity query feature expansion using knowledge base links[C] // Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM, 2014: 365-374.
[13] XIONG C, CALLAN J. Query expansion with Freebase[C] // Proceedings of the 2015 International Conference on the Theory of Information Retrieval. New York: ACM, 2015: 111-120.
[14] LI B, ZHOU L, FENG S, et al. A unified graph model for sentence-based opinion retrieval[C] // Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Somerset: Association for Computational Linguistics, 2010: 1367-1375.
[15] LIAO X-W, CHEN H, WEI J-J, et al. A weighted lexicon-based generative model for opinion retrieval[C] // 2014 International Conference on Machine Learning and Cybernetics(ICMLC). Washington: IEEE Computer Society, 2014:821-826.
[16] CAO G, NIE J-Y, GAO J, et al. Selecting good expansion terms for pseudo-relevance feedback[C] // Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2008: 243-250.
[17] ESULI A, SEBASTIANI F. Determining the semantic orientation of terms through gloss classification[C] // Proceedings of the 14th ACM International Conference on Information and Knowledge Management. New York: ACM, 2005: 617-624.
[1] 唐亮,赵晓峰,席耀一,易绵竹. 融合局部共现和上下文相似度的查询扩展方法[J]. 山东大学学报(理学版), 2017, 52(1): 29-36.
[2] 徐也,徐蔚然. 基于语义特征扩展的知识库增量引文推荐算法[J]. 山东大学学报(理学版), 2016, 51(11): 26-32.
[3] 徐建民1,3,陈振亚2,崔琰3. 基于用户兴趣及术语间关系的查询扩展方法[J]. J4, 2011, 46(5): 49-53.
[4] 石松1,王明文1,涂伟2,何世柱1. 基于Markov网络团的信息检索扩展模型[J]. J4, 2011, 46(5): 54-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!