您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (11): 44-48.doi: 10.6040/j.issn.1671-9352.0.2017.236

• • 上一篇    下一篇

基于量子测量的随机数提取机制

刘鸽1,刘青青2,张建中1   

  1. 1. 陕西师范大学数学与信息科学学院, 陕西 西安 710119;2. 洛阳师范学院数学科学学院, 河南 洛阳 471934
  • 收稿日期:2017-05-19 出版日期:2017-11-20 发布日期:2017-11-17
  • 通讯作者: 张建中(1960— ),男,博士,教授,研究方向为量子密码学和量子信息安全. E-mail:1416655910@qq.com E-mail:446552402@qq.com
  • 作者简介:刘鸽(1992— ),女,硕士研究生,研究方向为量子信息安全. E-mail:446552402@qq.com
  • 基金资助:
    国家自然科学基金资助项目(61402275,61402015,61273311);陕西自然科学基金资助项目(2015JM6263,2016JM6069);中央高校基本科研业务费专项基金资助项目(GK201402004)

Random number extraction mechanism based on quantum measurement

LIU Ge1, LIU Qing-qing2, ZHANG Jian-zhong1   

  1. 1. College of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China;
    2. School of Mathematical Science, Luoyang Normal Univerity, Luoyang 471934, Henan, China
  • Received:2017-05-19 Online:2017-11-20 Published:2017-11-17

摘要: 通过分析一般的基于John von Neumann随机数提取机制的随机数生成方案,提出了一种改进的有效生成真随机数的方案。此方案只需制备一种单量子态进行测量,应用John von Neumann提取机制对数据做处理,最后得到平衡随机序列。与之前的方案相比,改进后的方案更加简洁,且初始阶段所需粒子由Bell态简化成了单量子态。在对大量随机序列做统计后估算误差,进一步提出了简单的生成非平衡随机数的方法。

关键词: 量子测量, 随机数, John von Neumann算法

Abstract: After analysing the common random numbers(RNs)producing scheme based on John von Neumann random extraction mechanism, this paper proposes an improved effective RNs producing scheme. It just need to prepare one type of single photons and measure them, then, RNs can be get by processing the data in John von Neumann algorithm. Compared with the scheme before, this improved scheme is more concise and the photons in initial phase simplified to single photons. Furthermore, based on the statistic of RNs and error estimation, a simple method is proposed to generate unbalanced random numbers.

Key words: quantum measurement, John von Neumann algorithm, random number

中图分类号: 

  • TN918
[1] 吴双.量子随机数发生器和量子信息直传方案研究[D].长沙:国防科学技术大学,2006. WU Shuang. A study of quantum random number generator and quantum secure direct communication in a noisy channel[D]. Changsha: National University of Defense Technology, 2006.
[2] WAYNE M A, JEFFREY E R, AKSELROD G M, et al. Photon arrival time quantum random number generation[J]. Journal of Modern Optics, 2009, 56(4):516-522.
[3] QI B, CHI Y M, LO H K, et al. High-speed quantum random number generation by measuringphase noise of a single-mode later[J]. Optics Letter, 2000, 35(3):312-314.
[4] 汪超,黄鹏,黄端,等.基于光放大器的量子随机数发生器[J].密码学报,2014,1(2):180-186. WANG Chao, HUANG Peng, HUANG Duan, et al. Unbiased QRGN based on optical parametric amplifier[J]. Journal of Cryptologic Research, 2014, 1(2):180-186.
[5] 王建民,谢天宇,张鸿飞,等.无后处理高速量子随机数产生器设计[J].核电子学与探测技术,2015,35(1):31-35. WANG Jianmin, XIE Tianyu, ZHANG Hongfei, et al. Design of no post-processing high-speed quantum random number generator[J]. Nuclear Electronics and Detection Technology, 2015, 35(1):31-35.
[6] 金杰,罗敏,宫月红.一种基于热噪声的真随机数发生器的设计与实现[J].微电子学与计算机,2015,32(10):7-11. JIN Jie, LUO Min, GONG Yuehong. Design and implementation of a true random number generator based on MOSFET thermal noise[J]. Microelectronics and Computer, 2015, 32(10):7-11.
[7] NEUMANN J. Various techniques used in connection with random digits[J]. Applied Math Series, 1951.
[8] 邓乐,毛敏,张涌,等.应用伪随机序列的量子密码术[J].量子光学学报,1999,5(3):172-176. DENG Le, MAO Min, ZHANG Yong, et al. Quantum cryptography using pseudo-random sequences[J]. Journal of Quantum Optics, 1999, 5(3):172-176.
[9] 张仿.随机数在加密技术中的应用分析[J].计算机应用软件,2004,21(12):105-107. ZHANG Fang. Analysis and application of random number in encryption[J]. Computer Applications and Software, 2004, 21(12):105-107.
[10] 唐光召.量子随机数发生器的理论与实验研究[D].长沙:国防科学技术大学,2013. TANG Guangzhou. Theoretical and experimental study on quantum random number generation[D]. Changsha: National University of Defense Technology, 2013.
[11] 曾贵华.量子密码学[M].北京:科学出版社,2006. ZENG Guihua. Quantum cryptography[M]. Beijing: Science Press, 2006.
[12] 许曼莉.量子信息安全中随机源的研究[D].合肥:中国科学技术大学,2015. XU Manli. Research of the random resource on the security of quantum information [D]. Hefei: University of Science and Technology of China, 2015.
[13] BENNETT C H, BRASSARD G. Quantum crytography: publick key distribution and cointossing[C] // Proceedings of IEEE Internation Conference on Computers, Systems and Signal Processing. New York: IEEE, 1984, 560:175-179.
[14] 胡嘉仲,王向斌.基于诱骗态方法的量子密钥分发[J].中国科学:物理学 力学 天文学, 2011,41(4):459-465. HU Jiazhong, WANG Xiangbin. Quantum key distribution with the decoy-state method[J]. Scienia Sinica(Physica, Mechanica & Astronomica), 2011, 41(4):459-465.
[1] 王文华,曹怀信*,李玮. (A,B)-量子测量[J]. J4, 2012, 47(4): 70-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!