山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (1): 83-88.doi: 10.6040/j.issn.1671-9352.2.2017.082
李阳1,程雄1,童言1,陈伟1,秦涛2,张剑1,徐明迪1
LI Yang1, CHENG Xiong1, TONG Yan1, CHEN Wei1, QIN Tao2, ZHANG Jian1, XU Ming-di1
摘要: 为有效的从网络中挖掘出潜在威胁用户,提出了一种基于网络流量统计特征的异常用户挖掘方法。通过分析用户的网络流量,归纳出刻画网络流量集合的13个特征属性,包含网络流大小、数据包大小、数据包持续时间、数据包对称度等。在此基础上采用熵权决策法对每个特征选取合适的权重,计算出用户的行为威胁度,根据威胁度的大小和预先定义的阈值,将用户归为不同的威胁度分类等级。真实网络流量的实验结果显示,所提出的方法能够准确的实现潜在威胁的挖掘。
中图分类号:
[1] 焦文欢, 冯兴杰. 一种面向TCP流的异常检测技术[J]. 中国民航大学学报, 2014, 32(3):50-54. JIAO Wenhuan, FENG Xingjie. Anomaly detection technique oriented TCP flow[J]. Journal of Civil Aviation University of China, 2014, 32(3):50-54. [2] MAXION R A, FEATHER F E. A case study of Ethernet anomalies in a distributed computing environment[J]. IEEE Transactions on Reliability, 1990, 39(4):433-443. [3] 方峰, 蔡志平, 肇启佳. 使用Spark Streaming的自适应实时DDoS检测和防御技术[J]. 计算机科学与探索, 2016, 10(5):601-611. FANF Feng, CAI Zhiping, ZHAO Qijia. Adaptive technique for real-time DDos detection and defense using Spark Streaming[J]. Journal of Frontiers of Computer Science & Technology, 2016, 10(5):601-611. [4] KRAUSE J, SCALF M, SMITH L M. Identifying important features for intrusion detection using support vector machines and neural networks[C] // Proceedings 2003 Symposium on Applications and the Internet Workshops. Orlando: IEEE, 2003: 209-216. [5] JI S Y, Choi S, JEONG D H. Designing a two-level monitoring method to detect network abnormal behaviors[C] // Proceedings 2014 IEEE 15th International Conference on Information Reuse and Integration.[S.l.] : IEEE, 2014: 703-709. [6] CROVELLA M, LAKHINA A. Method and apparatus for whole-network anomaly diagnosis and method to detect and classify network anomalies using traffic feature distributions: US, US8869276[P]. 2014-10-21. [7] 陈鸿昶, 程国振, 伊鹏. 基于多尺度特征融合的异常流量检测方法[J]. 计算机科学, 2012, 39(2):42-46. CHEN Hongchang, CHENG Guozhen, YI Peng. Anomaly traffic detection based on multi-resolution feature fusion[J]. Computer Science, 2012, 39(2):42-46. [8] 罗玲, 殷保群, 曹杰. 基于sketch数据结构与正则性分布的骨干网流量异常分析与识别[J]. 系统科学与数学, 2015, 35(1):1-8. LUO Ling, YIN Baoqun, CAO Jie. Anomaly Analysis and identification of backbone network based on sketch and regularity distribution[J]. Journal of Systems Science and Mathematical Sciences, 2015, 35(1):1-8. [9] WANG H, ZHANG D, SKIN K G. Detecting SYN flooding attacks[C] // Proceedings Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.[S.l.] : IEEE, 2002: 1530-1539. [10] HAJJI H. Statistical analysis of network traffic for adaptive faults detection[J]. IEEE Transactions on Neural Networks, 2005, 16(5):1053-1063. [11] 钱叶魁, 陈鸣, 叶立新, 等. 基于多尺度主成分分析的全网络异常检测方法[J]. 软件学报, 2012, 23(2):361-377. QIAN Yekui, CHEN Ming, YE Lixin. Network — wide anomaly detection method based on multiscale principle component analysis[J]. Journal of Software, 2012, 23(2):361-377. [12] OVERVIEW T. Introduction to Cisco IOS® NetFlow [S/OL].[2017-08-28]. https://www.mendeley.com/research-papers/introduction-cisco-ios-netflow/. |
No related articles found! |
|