山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (3): 1-12.doi: 10.6040/j.issn.1671-9352.0.2017.371
• • 下一篇
廖祥文1,2,张凌鹰1,2,魏晶晶3,桂林1,2*,程学旗4,陈国龙1,2
LIAO Xiang-wen1,2, ZHANG Ling-ying1,2, WEI Jing-jing3, GUI Lin1,2*, CHENG Xue-qi4, CHEN Guo-long1,2
摘要: 针对现有张量影响力模型未能充分考虑用户的时间特征以及在线学习等问题,提出了一种融合时间特征的社交媒介用户影响力分析方法。该方法首先将用户观点、活跃度、网络中心度等特征加入张量模型中,并将张量分解过程中的用户潜在特征矩阵加入时间特征约束;其次,采用随机梯度下降的方法进行张量的分解;最后,通过融合不同张量片的影响力信息得到用户影响力得分。该方法的优点是能够快速分解张量并准确预测特定话题领域下的用户社会影响力,同时能够在已有模型参数的基础上进行新数据的在线训练。实验结果表明,与现有TwitterRank、OOLAM、受限非负张量分解模型等相比, 该方法在平均预测准确率上提升了2%~6%。同时,该方法的时间消耗仅为受限非负张量分解模型的30%~50%。
中图分类号:
[1] 吴信东, 李毅, 李磊. 在线社交网络影响力分析[J]. 计算机学报, 2014, 37(4): 735-752. [2] WENG J, LIM E P, JIANG J, et al. TwitterRank: finding topic-sensitive influential twitterers[C] //International Conference on Web Search and Web Data Mining. New York: ACM, 2010: 261-270. [3] BADASHIAN A S, STROULIA E. Measuring user influence in GitHub: the million follower fallacy[C] //Proceedings of the 3rd International Workshop on CrowdSourcing in Software Engineering. New York: ACM, 2016: 15-21. [4] LEE R K-W, LIM E P. Measuring user influence, susceptibility and cynicalness in sentiment diffusion[C] //Advances in Information Retrieval-37th European Conference on IR Research. Cham: Springer International Publishing, 2015: 411-422. [5] LI D, TANG J, DING Y, et al. Topic-level opinion influence model(TOIM): An investigation using tencent microblogging[J]. Computer Science, 2015, 6(12): 2657-2673. [6] CHEN C, GAO D, LI W, et al. Inferring topic-dependent influence roles of Twitter users[C] //Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. New York: ACM, 2014: 1203-1206. [7] 魏晶晶, 陈畅, 廖祥文, 等. 基于受限非负张量分解的用户社会影响力分析[J]. 通信学报, 2016, 37(6): 154-162. [8] EMBAR V R, BHATTACHARYA I, PANDIT V, et al. Online topic-based social influence analysis for the wimbledon championships[C] //Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2015: 1759-1768. [9] WANG J, LIU Z, ZHAO H. Topic oriented user influence analysis in social networks[C] //IEEE/Wic/ACM International Conference on Web Intelligence and Intelligent Agent Technology. Washington, DC: IEEE Computer Society, 2015: 123-126. [10] ZAMPARAS V, KANAVOS A, MAKRIS C. Real time analytics for measuring user influence on twitter[C] //IEEE International Conference on TOOLS with Artificial Intelligence. Washington, DC: IEEE Computer Society, 2015: 591-597. [11] 毛佳昕, 刘奕群, 张敏, 等. 基于用户行为的微博用户社会影响力分析[J]. 计算机学报, 2014, 37(4): 791-800. [12] HU X, TANG L, TANG J, et al. Exploiting social relations for sentiment analysis in microblogging[C] //Proceedings of the sixth ACM international conference on Web search and data mining. New York: ACM, 2013: 537-546. [13] KEMPE D, KLEINBERG J, TARDOS É. Maximizing the spread of influence through a social network[J]. Progressive Research, 2008:137-146. [14] CAI K, BAO S, YANG Z, et al. OOLAM: an opinion oriented link analysis model for influence persona discovery[C] //Proceedings of the fourth ACM international conference on Web search and data mining. New York: ACM, 2011: 645-654. [15] CUI P, WANG F, YANG S, et al. Item-level social influence prediction with probabilistic hybrid factor matrix factorization[C] //AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2011. [16] RODRIGUEZ M G, LESKOVEC J, KRAUSE A. Inferring networks of diffusion and influence[C] //Acm Knowledge Discovery & Data Mining. New York: ACM, 2011: 1019-1028. [17] KOLDA T G, BADER B W. Tensor decompositions and applications[J]. Siam Review, 2005, 66(4): 294-310. [18] MAEHARA T, HAYASHI K, KAWARABAYASHI K-I. Expected tensor decomposition with stochastic gradient descent[C] //Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2016: 1919-1925. [19] ACAR E, DUNLAVY D M, KOLDA T G. A scalable optimization approach for fitting canonical tensor decompositions[J]. Journal of Chemometrics, 2011, 25(2): 67-86. [20] ZEILER M D. ADADELTA: an adaptive learning rate method[J]. CoRR, 2012, abs/1212.5701(1): 1-6. |
[1] | 于金彪,任永强,曹伟东,鲁统超,程爱杰,戴涛. 可压多孔介质流的扩展混合元解法[J]. 山东大学学报(理学版), 2017, 52(8): 25-34. |
[2] | 邢海云,赵建立. 变异机制在网络演化博弈中的应用[J]. 山东大学学报(理学版), 2016, 51(12): 103-107. |
[3] | 葛美侠, 李莹, 赵建立, 邢海云. 网络演化博弈的策略一致性[J]. 山东大学学报(理学版), 2015, 50(11): 113-118. |
[4] | 邓磊, 赵建立, 刘华, 李莹. k-值控制网络的可控性与可观性[J]. 山东大学学报(理学版), 2015, 50(04): 27-35. |
[5] | 赵娜. 实偏对称矩形张量的E-奇异值[J]. J4, 2012, 47(10): 34-37. |
[6] | 程代展,赵寅,徐相如. 混合值逻辑及其应用[J]. 山东大学学报(理学版), 2011, 46(10): 32-44. |
[7] | 孙云1,唐绪兵1,黄时中2. 塞曼哈密顿在|3PJMJ〉表象中的矩阵元[J]. J4, 2011, 46(1): 56-66. |
[8] | 毕晓冬. 左拟正规带的张量积[J]. J4, 2009, 44(8): 39-41. |
[9] | 宋彩芹 赵建立 王晓东. 三矩阵左半张量积的加权Moore-Penrose[J]. J4, 2009, 44(10): 80-86. |
[10] | 宋彩芹,赵建立,李东方 . 矩阵左半张量积的(T,S,2)-逆的反序律[J]. J4, 2008, 43(6): 71-76 . |
[11] | 凌思涛 程学汉 魏木生. 一般线性四元数矩阵方程的Hermite解[J]. J4, 2008, 43(12): 1-4. |
|