您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (1): 20-26.doi: 10.6040/j.issn.1671-9352.0.2015.262

• • 上一篇    下一篇

N掺杂金红石TiO2光学性质的第一性原理研究

林雪玲,潘凤春,陈焕铭   

  1. 宁夏大学物理电气信息学院, 宁夏 银川 750021
  • 收稿日期:2015-05-28 出版日期:2016-01-16 发布日期:2016-11-29
  • 作者简介:林雪玲(1982— ),女,博士,讲师,研究方向为磁性半导体.E-mail: nxulxl@163.com
  • 基金资助:
    宁夏高等学校科学研究项目(NGY2014048)

The optical properties of N doped rutitle TiO2: first-principles calculations

LIN Xue-ling, PAN Feng-chun, CHEN Huan-ming   

  1. School of Physics and Electric Information Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
  • Received:2015-05-28 Online:2016-01-16 Published:2016-11-29

摘要: 运用第一性原理的LDA+U(UTi-3d=7 eV, UO-2p=4 eV)方法研究了N掺杂金红石TiO2的电子结构和光学吸收性质。研究表明N元素的掺杂可以降低TiO2的禁带宽度并在带隙中引入杂质能级。杂质能级主要由O-2p轨道和N-2p轨道之间的耦合形成。杂质能级的引入以及带隙宽度的降低可以增加TiO2对可见光的响应,并提高TiO2的光催化活性。费米能级附近的态密度由O-2p轨道和N-2p轨道之间的耦合形成π键构成,电子占据π键态和空的σ键态能级差大约为0.4 eV,可使N掺杂TiO2的光学吸收边落在在红外区域,即发生了所谓的光学吸收边的红移现象。

关键词: TiO2, N掺杂, 第一性原理, 光学性质

Abstract: The electronic structure and optical properties of N doped rutile TiO2 systems were investigated by the first-principles calculations of LDA+U method with U for Ti-3d and O-2p (UTi-3d=7 eV,UO-2p=4 eV). The calculations results show that the impurity energy level is introduced due to the coupling between O-2p and N-2p, and the band-gap is reduced because of the N dopant, which both can increase the TiO2 absorption edge to the visible region, and therefore facilitate the enhancement of the photocatalytic efficiency. The coupling of O-2p and N-2p states near the Fermi level forms the π bonds. The energy difference between the occupied π bonds and unoccupied σ bonds is 0.4 eV, which implies that the optical absorption-edge is in the infrared region. In other words, the N dopant makes the absorption-edge red shift.

Key words: N doped, TiO2, optical properties, the first-principles

中图分类号: 

  • X703
[1] GRANT F A. Properties of rutile titanium dioxide[J]. Reviews of Modern Physics, 1959, 31:646.
[2] WANG P, ZAKEERUDDIN S M, MOSER G E, et al. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte[J]. Nature Material, 2003, 2:402-407.
[3] BYRNE J A, EGGINS B R, BROWN N M D, et al. Immobiliza-tion of TiO2 powder for the treatment of polluted water[J]. Applied Catalysis B: Environmetal, 1998, 17:25-36.
[4] KAMISAKA H, ADACHI T, YAMASHITA K. Theoretical study of the structure and optical properties of carbon-doped tutile and anatase titanium oxides[J]. Journal of Chemical Physics, 2005, 123:84704.
[5] KHAN S U M, Al-SHAHRY M, INGLER W B. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science, 2002, 297:2243-2245.
[6] 徐凌, 唐超群, 钱俊. C掺杂锐钛矿相TiO2吸收光谱的第一性原理研究[J].物理学报,2010, 59(4):2721-2727. XU Ling, TANG Chaoqun, QIAN Jun. The first-principles study of absorption spectrum of C-doped anatase TiO2*[J]. Acta Phy Sin, 2010, 59(4):2721-2727.
[7] 李青坤, 王彪, 王强.碳掺杂二氧化钛光催化性能的第一性原理研究[J]. 黑龙江大学自然科学学报,2007, 24(4):455-457. LI Qingkun, WANG Biao, WANG Qiang. First-principles study on the photocatalysis in the C-doped TiO2 rutile[J]. Journal of Heilongjiang University: Natural Science, 2007, 24(4):455-457.
[8] OHNO T, MITSUI T, MATSUMURA M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light[J]. Chemistry Letters, 2003, 32:364-365.
[9] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238:37-38.
[10] ASAJI R,MORIKAWA T,OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293:269-271.
[11] UMEBAYASHI T, YAMAKI T, ITOH H, et al. Band gap narrowing of titanium dioxide by sulfur doping[J]. Applied Physics Letters, 2002, 81(3):454-456.
[12] SAKTHIVEL S, KISC H. Day light photocatalysis by carbon-modified titaniumdi oxide[J]. Angewandte Chemie-International Edition, 2003, 42(40):4908-4911.
[13] IRIE H, WATANABE Y, HASHIMOTO K. Carbon-doped anatase as a visible light-sensitive photocatalyst[J]. Chemistry Letters, 2003, 32:772.
[14] 张学军,高攀,柳清菊.氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究[J].物理学报,2010,59(7):4930-4938. ZHANG Xuejun, GAO Pan, LIU Qingju. First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron[J]. Acta Phys Sin, 2010, 59(7):4930-4938.
[15] 赵宗彦, 柳清菊, 朱忠其, 等.S掺杂对锐钛矿相TiO2电子结构于光催化性能的影响[J].物理学报,2008,57(6):3760. ZHAO Zongyan, LIU Qingju, ZHU Zhongqi, et al. Effects of S doping on electronic structures and photocatalytic properties of anatase TiO2[J].Acta Phys Sin, 2008,57(6):3760.
[16] 郑树凯, 吴国浩, 刘磊. P掺杂锐钛矿相TiO2的第一性原理研究[J].物理学报,2013,62(4):043102. ZHENG Shukai, WU Guohao, LIU Lei. First-principles calculations of P-doped anatase TiO2[J].Acta Phys Sin, 2013, 62(4):043102.
[17] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23):13244-13249.
[18] PACK J D, MONKHORST H J. Special points for Brillouin-zone integrations-a reply[J]. Physical Review B, 1977, 16:1748-1749.
[19] ZHOU S, XU Q, POTZGER K, et al. Room temperature ferromagnetism in carbon-implanted ZnO[J]. Applied Physics Letters, 2008, 93:232507.
[20] ARROYO-DE DOMPABLO M E, MORALES-García A, TARAYILLO M. DFT+U calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs[J]. J Chem Phys, 2011, 135:054503.
[1] 林雪玲,潘凤春*. 3C-SiC电子结构和铁磁性的第一性原理研究[J]. 山东大学学报(理学版), 2014, 49(03): 18-21.
[2] 柳福提1,2,程晓洪2,张淑华3. MgH2的结构与热力学性质的第一性原理研究[J]. J4, 2012, 47(1): 39-43.
[3] 张淑华1, 柳福提2,3,程晓洪3. 高压下CaF2晶体的电子结构与光学性质[J]. J4, 2011, 46(7): 39-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!