山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (1): 101-105.doi: 10.6040/j.issn.1671-9352.0.2015.357
王磊1,谢江宁2
WANG Lei1, XIE Jiang-ning2
摘要: 颜色恒常性是指当照射物体表面的颜色光发生变化时,人们对该物体表面颜色的知觉仍然保持不变的视觉特性。灰度世界方法是一种常用的的颜色恒常方法,它假设客观世界中物体表面的平均反射比趋于灰色(灰度世界假设)。传统的灰度世界方法对整幅图像进行处理,然而并不是所有的图像都满足灰度世界假设。首先采用层级分割方法把图像分割成若干个片段,然后采用使用灰度世界方法处理各个片段,得到各个片段的估计结果;最后对这些估计结果进行聚类,得到最终结果。实验结果表明,该方法优于原始的灰度世界方法。与原始方法相比,平均误差降低至36.0%、中值误差降低至63.5%。本文所提出的算法优于目前领先的颜色恒常算法。
中图分类号:
[1] YANG J, STIEFELHAGEN R, MEIER U,WAIBEL A. Visual tracking formulti-modal human computer interaction[C] // Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 1998: 140-147. [2] GEVERS T, SMEULDERS A W M. Pictoseek: Combining colour and shape invariant features for image retrieval[J]. IEEE Transactions on Image Processing, 2000, 9(1):102-119. [3] FAIRCHILD M D. Color appearance models[J]. Packaging Engineering, 2005, 552(3):346. [4] BUCHSBAUM G. A spatial processor model for object colour perception[J]. Journal of the Franklin Institute, 1980, 310(80):1-26. [5] BARNARD K, FUNT B, CARDEI V. A comparison of computational color constancy algorithms, part one; theory and experiments with synthetic data[J]. IEEE Transactions on Image Processing, 2002, 11:972-984. [6] 赵萍,王文举,陈伟.分层色彩校正算法研究[J].计算机工程与应用,2015,51(6):158-162. ZHAO Ping, WANG Wenju, CHEN Wei. Research on hierarchical color correction algorithm[J]. Computer Engineering and Application, 2015, 51(6):158-162. [7] 张明,白松浩,邢姗姗.基于金字塔分解的自动色彩均衡算法[J].计算机工程,2015,(2):215-218. ZHANG Ming, BAI Songhao, XING Shanshan. Automatic color equalization algorithm based on pyramid decomposition[J]. Computer Engineering, 2015,(2):215-218. [8] VAN DE SANDE K E A, UIJLINGS J R R, GEVERS T, et al. Segmentation as selective search for object recognition[C] // Proceedings of IEEE International Conference on Computer Vision. New York: IEEE, 2011: 1879-1886. [9] SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2000, 22(8):888-905. [10] FELZENSZWALB P F, HUTTENLOCHER D P. Efficient graph-based image segmentation[J]. International Journal of Computer Vision, 2004, 59(2):167-181. [11] COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5):603-619. [12] GEHLER P V, ROTHER C, BLAKE A, et al. Bayesiancolor constancy revisited[C] // Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2008: 1-8. [13] LU R, GIJSENIJ A, GEVERS T, et al. Color constancy using 3D scene geometry[J]. IEEE International Conference on Computer Vision, 2009, 30(2):1749-1756. [14] GIJSENIJ A, GEVERS T, WEIJER J V D. Generalized gamut mapping using image derivative structures for color constancy[J]. International Journal of Computer Vision, 2010, 86(2-3):127-139. [15] GIJSENIJ A, GEVERS T. Color constancy using natural image statistics and scene semantics[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(4):687-698. [16] LAND E H. The retinex theory of color vision[J]. Scientific American, 1977, 237(6):108-128. [17] FINLAYSON G, TREZZI E. Shades of gray and colour constancy [C] // Proceedings of the 12th Color Imaging Conference: Color Science And Engineering Systems, Technologies, Applications.Springfield:SOC Imaging Science & Technology, 2004: 37-41. [18] WEIJER J V D, GEVERS T, GIJSENIJ A. Edge-based color constancy[J]. IEEE Transactions on Image Processing, 2007, 16(9):2207-2214. [19] FORSYTH D A. A novel algorithm for color constancy[J]. International Journal of Computer Vision, 1990, 5(1):5-35. [20] SHI L, FUNT B. Re-processed version of the gehler color constancy dataset of 568 images[EB/OL].[2015-02-14]. http://www.cs.sfu.ca/~colour/data/ |
[1] | 刘战杰1,马儒宁1,邹国平1,钟宝江2,丁军娣3. 一种新的基于区域生长的彩色图像分割算法[J]. J4, 2010, 45(7): 76-80. |
[2] | 徐光柱1,刘鸣2,任东1,马义德3,刘晓丽1. 基于脉冲耦合神经网络的多区域图像分割[J]. J4, 2010, 45(7): 86-93. |
[3] | 董吉文,杨 森,鲁守银 . 基于单目视觉的移动机器人导航方法[J]. J4, 2008, 43(11): 1-04 . |
|