山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (1): 123-127.doi: 10.6040/j.issn.1671-9352.0.2015.003
刘洋,达朝究,李富明
LIU Yang, DA Chao-jiu, LI Fu-ming
摘要: 研究了一类半线性抛物方程的初边值问题,在具有正初始能量的情况下,通过Nehari流形与凸性方法得到了解的有限时间爆破,进而刻画了初始能量与有限时间爆破的关系。
中图分类号:
[1] BUDD C, DOLD B, STUART A. Blow-up in a system of partial differential equations with conserved first integral II Problems with convection[J]. SIAM J Appl Math, 1994, 54(3):610-640. [2] EI SOUFI A, JAZAR M, MONNEAU R. A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions[J]. Ann I H Poincaré-AN, 2007, 24(1):17-39. [3] JAZAR M, KIWAN R. Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions[J]. Ann I H Poincaré-AN, 2008, 25(2):215-218. [4] GAO Wenjie, HAN Yuzhu. Blow-up of a nonlocal semilinear parabolic equation with positive initial energy[J]. Appl Math Lett, 2011, 24(5):784-788. [5] ALVES C O, EL HAMIDI A. Nehari manifold and existence of positive solutions to a class of quasilinear problems[J]. Nonlinear Anal-Theor, 2005, 60(4):611-624. [6] AMBROSETTI A, RABINOWITZ P H. Dual variational methods in critical point theory and applications[J]. J Funct Anal, 1973, 14(4):349-381. [7] MO Haiping, LIU Yang, YU Tao. Continuity of depth functions of potential well family for a class of nonlinear wave equations[J]. Mathematica Applicata, 2011, 24(1):126-130. |
[1] | 孙国伟, 买阿丽. 一类二阶非线性差分方程同宿解的多解性[J]. 山东大学学报(理学版), 2015, 50(05): 51-54. |
|