山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (3): 51-59.doi: 10.6040/j.issn.1671-9352.0.2015.212
史学伟,贾建文*
SHI Xue-wei, JIA Jian-wen*
摘要: 研究了一类具有信息变量,饱和发生率和等级治愈率的SIR传染病模型。首先给出基本再生数R0,利用Routh-Hurwitz 判据和特征根方法得到当R0<1时,无病平衡点局部渐近稳定;当R0>1时,地方病平衡点局部渐近稳定; 模型出现两种分支, 分别为跨临界分支和Hopf分支。 其次通过构造Lyapunov函数证明了无病平衡点的全局稳定性, 利用自治收敛定理证明了地方病平衡点的全局稳定性。 最后用数值模拟验证了理论结果的正确性。
中图分类号:
[1] 马知恩, 周义仓, 王稳地,等. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社,2012. MA Zhien, ZHOU Yicang, WANG Wendi, et al. The mathematical modeling and research on dynamics of epidemic[M]. Beijing: Science Press, 2012. [2] DONOFRIO A, MANFREDI P, SALINELLI E. Bifurcation thresholds in a SIR model with information dependent vaccination[J]. Mathematical Modelling of Natural Phenomena, 2007, 2(1):26-43. [3] DONOFRIO A, MANFREDI P, SALINELLI E. Vaccinating behaviour, information and the dynamics of SIR vaccine preventable diseases[J]. Theor Popul Biol, 2007, 71(3):301-317. [4] LIN Yuguo, JIANG Daqing, LIU Taihui. Nontrivial periodic solution of a stochastic epidemic model with seasonal variation[J]. Applied Mathematics Letters, 2015, 45(1):103-107. [5] MUROYA Y, ENATSU Y, KUNIYA T. Global stability of extended multi-group SIR epidemic model with patches through migration and cross patch infection[J]. Acta Math Sci, 2013, 33(2):341-361. [6] BUONOMO B, DONOFRIO A, LACITIGNOLA D. Global stability of an SIR epidemic model with information dependent vaccination[J]. Mathematical Biosciences, 2008, 216(1):9-16. [7] PANG Jianhua, CUI Jingan, HUI Jing. Rich dynamics of epidemic model with sub-optimal immunity and nonlinear recovery rate[J]. Mathematical and Computer Modelling, 2011, 54(1/2):440-448. [8] MUROYA Y, LI H X, KUNIYA T. Complete global analysis of an SIRS epidemic model with graded cure and incomplete recovery rates[J]. J Math Anal Appl, 2014, 410(2):719-732. [9] HAO Lijie, JIANG Guirong, LIU Suyu, et al. Global dynamics of an SIRS epidemic model with saturation incidence rate[J]. BioSystems, 2013, 114(1):56-63. [10] ELAIW A M, ALSHAMRANI N H. Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal[J]. Nonlinear Anal: Real World Appl, 2015, 26:161-190. [11] ZHANG Xiaobing, HUO Haifeng, XIANG Hong, et al. An SIRS epidemic model with pulse vaccination and non-monotonic incidence rate[J]. Nonlinear Analysis: Hybrid Systems, 2013, 8(5):13-21. [12] KAR T K, PRASANTA K M. Global dynamics and bifurcation in delayed SIR model[J] , Nonlinear Anal: Real World Appl, 2011, 12(4):2058-2068. [13] YAN Caijuan, JIA Jianwen. Dynamics of an SIR epidemic model with information variable and limited medical resources revisited[J]. Discrete Dynamics in Nature and Society, 2014, 2014: 861710.1-861710.11. [14] GUCKENHEIMER J, HOLMES P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields[M]. New York: Springer-Verlag, 1983: 117-156. [15] LI M, MULDOWNEY J S. A geometric approach to global-stability problems[J]. SIAM J Math Anal, 1996, 27(4):1070-1083. |
[1] | 董婵, 张菊平, 李有文. 两斑块间具有种群动力学的#br# 疟疾传播模型研究[J]. 山东大学学报(理学版), 2014, 49(06): 74-78. |
[2] | 陈新一. 一类非自治捕食系统的动力学行为[J]. J4, 2013, 48(12): 18-23. |
[3] | . 一个具有BeddingtonDeAngelis功能反应项的捕食-食饵反应扩散模型的全局渐近稳定性[J]. J4, 2009, 44(6): 75-78. |
[4] | . 一类新的含有垂直传染与脉冲免疫的SIR传染病模型的定性分析[J]. J4, 2009, 44(5): 67-73. |
[5] | 刘静1,2 . 一类延迟细胞神经网络全局渐近稳定性条件[J]. J4, 2009, 44(4): 61-65 . |
|