《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (3): 10-17, 27.doi: 10.6040/j.issn.1671-9352.2.2018.084
Xiao-jie XIE1,2(),Ying LIANG1,*(),Xiang-xiang DONG1,2
摘要:
分析识别社交网络用户敏感信息,有利于从技术上量化隐私泄露程度,进行隐私保护。针对现有的用户属性识别方法需要对用户属性取值进行强假设的问题,结合RL迭代分类框架和扩展wvRN关系识别的方法,提出了一种社交网络用户敏感属性迭代识别方法。通过卷积神经网络提取用户文本特征进行识别,结合邻居结点迭代地进行关系识别,不仅弱化了对用户属性的假设,而且提高了可用性。实验结果表明,通过在社交网络中获取少量的标注数据,对迭代识别方法设置合理的参数值,可以获得较好的用户敏感属性识别结果。
中图分类号:
1 | ACQUISTI A, GROSS R. Imagined communities: awareness, information sharing, and privacy on the facebook[M]// ACQUISTI A, GROSS R. eds. Privacy Enhancing Technologies. Berlin: Springer, 2006: 36-58. |
2 | LI Xiaoxue, CAO Yannan, SHANG Yanmin, et al. Inferring user profiles in online social networks based on convolutional neural network[C]// Proceedings of International Conference on Knowledge Science, Engineering and Management(KSEM). New York: Springer, 2017: 274-286. |
3 | XU W H, ZHOU X, LI L. Inferring privacy information via social relations[C]//2008 IEEE 24th International Conference on Data Engineering Workshop. Mexico: ICDE, 2008: 525-530. |
4 | LINDAMOOD J, HEATHERLY R, KANTARCIOGLU M, et al. Inferring private information using social network data[C]// International Conference on World Wide Web. New York: ACM, 2008. |
5 | JIA Jinyuan, WANG Binghui, ZHANG Le, et al. AttriInfer: inferring user attributes in online social networks using Markov random fields[C]// Proceedings of International World Wide Web Conferences(WWW). New York: ACM, 2017: 1561-1569. |
6 | DONG Y X, TANG J, WU S, et al. Link prediction and recommendation across heterogeneous social networks[C]// IEEE International Conference on Data Mining. New York: IEEE, 2013. |
7 | CHAUDHARI G, AVADHANULA V, SARAWAGI S. A few good predictions: selective node labeling in a social network[C]// ACM International Conference on Web Search & Data Mining.[s.l.]: ACM, 2014. |
8 | ELENA Z, LISE G. To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles[C]// Proceedings of International World Wide Web Conferences(WWW). New York: ACM, 2009: 531-540. |
9 | LARS B, ERIC S, CAMERON M. Find me if you can: improving geographical prediction with social and spatial proximity[C] // Proceedings of International World Wide Web Conferences(WWW). North Carolina: ACM, 2010: 61-70. |
10 | LI Rui, WANG Chi, CHANG Chenchuan. User profiling in an ego network: co-profiling attributes and relationships[C]// Proceedings of International World Wide Web Conferences(WWW). New Youk: ACM, 2014: 819-830. |
11 |
DOUGNON R Y , FOURNIER-VIGER P , LIN J C W , et al. Inferring social network user profiles using a partial social graph[J]. Journal of Intelligent Information Systems, 2016, 47 (2): 313- 344.
doi: 10.1007/s10844-016-0402-y |
12 | WONG R K, VIDYALAKSHMI B S. Privacy leakage via attribute inference in directed social networks[C]// Proceedings of International Conference on Information and Communications Security(ICICS). Berlin: Springer. 2016: 333-346. |
13 |
胡开先, 梁英, 许洪波, 等. 一种社会网络用户身份特征识别方法[J]. 计算机研究与发展, 2016, 53 (11): 2630- 2644.
doi: 10.7544/issn1000-1239.2016.20150219 |
HU Kaixian , LIANG Yin , XU Hongbo , et al. A method for social network user identity feature recognition[J]. Journal of Computer Research and Development, 2016, 53 (11): 2630- 2644.
doi: 10.7544/issn1000-1239.2016.20150219 |
|
14 | GONG Zhenqiang, LIU Bin. You are who you know and how you behave: attribute inference attacks via users' social friends and behaviors[J]. arXiv: 1606.05893. https: //arxiv.org/abs/1606.05893 |
15 | ABDELBERI C, GERGELY A, MOHAMED A K. You are what you like! Information leakage through users' interests[C]// Proceedings of ISOC Network and Distributed System Security Symposium(NDSS). San Diego: [s.n.], 2012. |
16 | ALAN M, BIMAL V, KRISHNA P, et al. You are who you know: inferring user profiles in online social networks[C]// Proceedings of ACM International Conference on Web Search and Data Mining(WSDM). New York: ACM, 2010: 251-260. |
17 | MACSKASSY S A , PROVOST F . Classification in networked data: a toolkit and a univariate case study[J]. Journal of Machine Learning Research, 2007, 8 (3): 1- 41. |
18 | YOON K. Convolutional neural networks for sentence classification[C] // Proceedings of Conference on Empirical Methods in Natural Language Processing(EMNLP). Doha: ACL, 2014: 1746-1751. |
[1] | 张中军,张文娟,于来行,李润川. 基于网络距离和内容相似度的微博社交网络社区划分方法[J]. 山东大学学报(理学版), 2017, 52(7): 97-103. |
[2] | 康海燕,马跃雷. 差分隐私保护在数据挖掘中应用综述[J]. 山东大学学报(理学版), 2017, 52(3): 16-23. |
[3] | 邓小方,钟元生,吕琳媛,王明文,熊乃学. 融合社交网络的物质扩散推荐算法[J]. 山东大学学报(理学版), 2017, 52(3): 51-59. |
[4] | 李宇溪,王恺璇,林慕清,周福才. 基于匿名广播加密的P2P社交网络隐私保护系统[J]. 山东大学学报(理学版), 2016, 51(9): 84-91. |
[5] | 柳欣,徐秋亮,张波. 满足可控关联性的合作群签名方案[J]. 山东大学学报(理学版), 2016, 51(9): 18-35. |
[6] | 祝升,周斌,朱湘. 综合用户相似性与话题时效性的影响力用户发现算法[J]. 山东大学学报(理学版), 2016, 51(9): 113-120. |
[7] | 万中英,王明文,左家莉,万剑怡. 结合全局和局部信息的特征选择算法[J]. 山东大学学报(理学版), 2016, 51(5): 87-93. |
[8] | 张少群,魏晶晶,廖祥文,简思远,陈国龙. Twitter中的情绪传染现象[J]. 山东大学学报(理学版), 2016, 51(1): 71-76. |
[9] | 张凌, 任雪芳. 基数余-亏定理与数据外-内挖掘-分离[J]. 山东大学学报(理学版), 2015, 50(08): 90-94. |
[10] | 马成龙, 姜亚松, 李艳玲, 张艳, 颜永红. 基于词矢量相似度的短文本分类[J]. 山东大学学报(理学版), 2014, 49(12): 18-22. |
[11] | 郑妍, 庞琳, 毕慧, 刘玮, 程工. 基于情感主题模型的特征选择方法[J]. 山东大学学报(理学版), 2014, 49(11): 74-81. |
[12] | 吴熙曦, 李炳龙, 张天琪. 基于KNN的Android智能手机微信取证方法[J]. 山东大学学报(理学版), 2014, 49(09): 150-153. |
[13] | 刘伍颖,易绵竹,张兴. 一种时空高效的多类别文本分类算法[J]. J4, 2013, 48(11): 99-104. |
[14] | 蒋盛益1,庞观松2,张建军3. 基于聚类的垃圾邮件识别技术研究[J]. J4, 2011, 46(5): 71-76. |
[15] | 张文东1,尹金焕1,贾晓飞2,黄超1,苑衍梅1. 基于向量的频繁项集挖掘算法研究[J]. J4, 2011, 46(3): 31-34. |
|