您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (3): 75-84.doi: 10.6040/j.issn.1671-9352.0.2018.297

• • 上一篇    

切换奇异系统事件触发控制的输入输出有限时间稳定

冯娜娜,吴保卫*   

  1. 陕西师范大学数学与信息科学学院, 陕西 西安 710119
  • 发布日期:2019-03-19
  • 作者简介:冯娜娜(1993— ), 女, 硕士研究生, 研究方向为控制理论. E-mail:nnfeng@snnu.edu.cn*通信作者简介:吴保卫(1963— ), 男, 博士, 教授, 博士生导师, 研究方向为控制理论. E-mail:wubw@snnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61403241);中央高校基本科研业务费项目(GK201703009)

Input-output finite time stability for event-triggered control of switched singular systems

FENG Na-na, WU Bao-wei*   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Published:2019-03-19

摘要: 研究了基于事件触发的切换奇异系统的输入输出有限时间稳定性问题。给出切换奇异系统输入输出有限时间稳定的概念,并提出事件触发条件。基于事件触发机制设计了动态输出反馈控制器,利用Lyapunov函数和平均驻留时间方法,得到切换奇异闭环系统输入输出有限时间稳定的充分条件,并且得到了动态输出反馈控制器的参数。最后用一个数值实例说明结论的有效性。

关键词: 切换奇异系统, 事件触发控制, 输入输出有限时间稳定, 动态输出反馈控制

Abstract: The input-output finite-time stability for event-triggered-based switched singular systems is investigated. Concept of input-output finite-time stability for switched singular systems is given, and an event-triggered condition is proposed. The dynamic output feedback controller based on event-triggered mechanism is designed, by applying the Lyapunov function technique and average dwell time approach, some sufficient conditions for input-output finite-time stability of the switched singular closed-loop systems are derived, furthermore, dynamic output feedback controller parameters are obtained. Lastly, a numerical example is employed to illustrate the validity of the theoretical results.

Key words: switched singular systems, event-triggered control, input-output finite-time stability, dynamic output feedback control

中图分类号: 

  • O231
[1] 张耀利,吴保卫,王月娥,等.切换奇异系统的有限时间稳定[J].物理学报, 2014, 63(17):32-41. ZHANG Yaoli, WU Baowei, WANG Yue-e, et al. Finite-time stability for switched singular systems[J]. Acta Physica Sinica, 2014, 63(17):32-41.
[2] ZHOU Lei, HO D W C, ZHAI Guisheng. Stability analysis of switched linear singular systems[J]. Automatica, 2013, 49(5):1481-1487.
[3] LI Jinghan, MA Ruicheng, DIMIROVSKI G M, et al. Dwell-time-based stabilization of switched linear singular systems with all unstable-mode subsystems[J]. Journal of the Franklin Institute, 2017, 354(7):2712-2724.
[4] MENG Min, LAM J, FENG Jun-e, et al. Exponential stability analysis and l1 synthesis of positive T-S fuzzy systems with time-varying delays[J]. Nonlinear Analysis: Hybrid Systems, 2017, 24:186-197.
[5] AMATO F, AMBROSINO R, COSENTINO C, et al. Input-output finite time stabilization of linear systems[J]. Automatica, 2010, 46(9):1558-1562.
[6] MA Yajing, WU Baowei, WANG Yue-e, et al. Input-output finite time stability of fractional order linear systems with 0 <α< 1[J]. Transactions of the Institute of Measurement and Control, 2017, 39(5):653-659.
[7] YAO Juan, FENG Jun-e, SUN Lin, et al. Input-output finite-time stability of time-varying linear singular systems[C] // Proceedings of the 30th Chinese Control Conference. Yantai: IEEE, 2011:62-66.
[8] AMATO F, CARANNANTE G, TOMMASI G D, et al. Input-output fnite-time stabilization of linear systems with input constraints[J]. IET Control Theory & Applications, 2014, 8(14):1429-1438.
[9] AMATO F, TOMMASI G D, PIRONTI A. Input-output finite-time stabilization of impulsive linear systems: necessary and sufficient conditions[J]. Nonlinear Analysis: Hybrid Systems, 2016, 19:93-106.
[10] LIU Leipo, CAO Xiangyang, FU Zhumu, et al. Input-output finite-time control of positive switched systems with time-varying and distributed delays[J]. Journal of Control Science and Engineering, 2017, 2017:1-12.
[11] LI Taifang, FU Jun. Event-triggered control of switched linear systems[J]. Journal of the Franklin Institute,2017, 354(15):6451-6462.
[12] XIANG Weiming, JOHNSON T T. Event-triggered control for continuous-time switched linear systems[J].IET Control Theory & Applications, 2017, 11(11):1694-1703.
[13] WANG Jia, ZHANG Xianming, HAN Qinglong. Event-triggered generalized dissipativity fltering for neural networks with time-varying delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(1):77-88.
[14] MA Guoqi, LIU Xinghua, QIN Linlin, et al. Finite-time event-triggered H control for switched systems with time-varying delay[J]. Neurocomputing, 2016, 207:828-842.
[15] ZHANG Xianming, HAN Qinglong. Event-triggered dynamic output feedback control for networked control systems[J]. IET Control Theory & Applications, 2014, 8(4):226-234.
[16] QI Yiwen, CAO Ming. Event-triggered dynamic output feedback control for switched linear systems[C] // Proceedings of the 35th Chinese Control Conference. Chengdu: IEEE, 2016: 2361-2367.
[17] XU Qiyi, ZHANG Yijun, ZHANG Baoyong. Network-based event-triggered H fltering for discrete-time singular Markovian jump systems[J]. Signal Processing, 2018, 145:106-115.
[18] CHENG Fang, HAO Fei. Event-triggered control for linear descriptor systems[J]. Circuits Systems and Signal Processing, 2013, 32(3):1065-1079.
[1] 张倩,李海洋. 稀疏信息处理中的迭代分式阈值算法[J]. 山东大学学报(理学版), 2017, 52(9): 76-82.
[2] 张春艳,郝胜男,冯立超. 一类非线性脉冲微分系统爆炸解的随机压制[J]. 山东大学学报(理学版), 2016, 51(2): 29-36.
[3] 魏立峰,陈丽. 一类带松弛控制的HamiltonJacobiBellman方程的粘性解[J]. J4, 2009, 44(12): 1-5.
[4] 张佳成 吴保卫. 非线性中立系统混合型反馈保性能控制器设计[J]. J4, 2009, 44(10): 67-74.
[5] . 一类非线性系统有限时间稳定控制的新方法[J]. J4, 2009, 44(7): 55-61.
[6] 闫鹏,沈艳军,王建凤. 类广义中立型系统的稳定性分析[J]. J4, 2009, 44(4): 66-71 .
[7] 张卫,鞠培军. 具有混合时滞的区间广义系统弹性鲁棒H∞控制[J]. J4, 2009, 44(1): 63-66 .
[8] 马宏基,侯 婷,邢建民 . 带指数稳定度约束的不定随机LQ问题[J]. J4, 2008, 43(5): 58-62 .
[9] 张 卫,鞠培军* . 广义变时滞区间系统的鲁棒H∞弹性控制[J]. J4, 2008, 43(4): 58-61 .
[10] 孙炜伟,王玉振 . 几类时滞非线性哈密顿系统的稳定性分析[J]. J4, 2007, 42(12): 1-09 .
[11] 李翠翠,沈艳军*,朱 琳 . 不确定线性奇异系统的有限时间控制[J]. J4, 2007, 42(12): 104-109 .
[12] 孙艳艳,吴 臻 . 一类部分可观测信息下不定LQ问题可解的充分条件[J]. J4, 2007, 42(3): 29-31 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!