《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (4): 85-91.doi: 10.6040/j.issn.1671-9352.0.2019.207
• • 上一篇
张佳凡,吕星星*
ZHANG Jia-fan, LYU Xing-xing*
摘要: 利用初等和组合的方法研究了拉盖尔多项式的基本性质, 并给出了一些新的恒等式。
中图分类号:
[1] CHIHARA T S. An introduction to orthogonal polynomials, Gordon and breach[M]. New York: [s.n.] , 1978. [2] CHATTERJEA S K. On a generating function of Languerre polynomials[J]. Bollettino dell'Unione Matematica Italiana,1962, 17:179-182. [3] KOEKOEK R, SWARTTOUW R F. The askey-scheme of hypergeometric orthogonal polynomials and its q-analogue[R] // Report 98-17. Delft: Delft University of Technology, 1998. [4] SZEGÓ G. Orthogonal polynomials[M] //American Mathematical Society Colloquim Publication Series, Vol 23. Providence, RI: American Mathematical Society, 1975. [5] GOMEZ-ULLATE D, GRANDATI Y, MILSON R. Shape invariance and equivalence relations for pseudo-Wronskians of Laguerre and Jacobi polynomials[J]. Journal of Physics A-Mathematical and Theoretical, 2018, 51:345201. [6] KIM T, KIM D, DOLGY V. Sums of finite products of Legendre and Laguerre polynomials[J]. Advances in Difference Equation, 2018, 277. DOI:10.1186/s13662-018-1740-6. [7] HUANG Li, ZHANG Haoxuan, LIAO Yi. Discontinuous Galerkin method using Laguerre polynomials for solving a time-domain electric field integral equation[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17:865-868. [8] YE Wei, ZHANG Kuizheng, ZHANG Haoliang. Laguerre-polynomial-weighted squeezed vacuum: generation and its properties of entanglement[J]. Laser Physics Letters, 2018, 15:025204. [9] ALOUI B. Characterization of Laguerre polynomials as orthogonal polynomials connected by the Laguerre degree raising shift operator[J]. Ramanujan Journal, 2018, 45:475-481. [10] JINDAL A, LAISHRAM S, SARMA R. Irreducibility and Galois groups of generalized Laguerre polynomials[J]. Journal of Number Theory, 2018, 183:388-406. [11] OKSUZER O, KARSLI H, YESILDAL F. Rate of convergence of the Bezier variant of an operator involving Laguerre polynomials[J]. Mathematical Methods in Applied Sciences, 2018, 41:912-919. [12] SARANYA N G, SHOREY T N. Irreducibility of generalized Laguerre polynomials L1/2+un(x2) with -18≤u≤-2[J]. Acta Arithmetica, 2018, 184:363-383. [13] GHAYASUDDIN M, KHAN N, KHAN S W. Some finite integrals involving the product of Bessel function with Jacobi and Laguerre polynomials[J]. Communications of the KMS, 2018, 33:1013-1024. [14] YUAN Jiawei, JIANG Yaolin. A parameterised model order reduction method for parametric systems based on Laguerre polynomials[J]. International Journal of Control, 2018, 91:1861-1872. [15] SHARAPUDINOV I I, MAGOMED-KASUMOV M G. On representation of a solution to the Cauchy problem by a Fourier series in Sobolev-orthogonal polynomials generated by Laguerre polynomials[J]. Differential Equations, 2018, 54:49-66. [16] NIU Dawei, LI Long. q-Laguerre polynomials and related q-partial differential equations[J]. Journal of Difference Equations and Applications, 2018, 24:375-390. [17] YE Wei, ZHOU Weidong, ZHANG Haoliang. Laguerre polynomial excited coherent state: generation and nonclassical properties[J]. Laser Physics Letters, 2017, 14:115201. [18] KHAN S, KHAN R. Modified relativistic Laguerre polynomials. Monomiality and Lie algebraic methods[J]. Georgian Mathematical Journal, 2016, 23:381-386. [19] HAN Pengju, CHEN Yang. The recurrence coeffcients of a semi-classical Laguerre polynomials and the large n asymptotics of the associated Hankel determinant[J]. Random Matrices-Theory and Applications, 2017, 6:1740002. [20] DESHWAL S, ACU A M, AGRAWAL P N. Pointwise approximation by Bézier variant of an operator based on Laguerre polynomials[J]. Journal of Mathematical Inequalities, 2018, 12:693-707. [21] APOSTOL T M. Introduction to analytic number theory[M]. New York: Springer-Verlag, 1976. |
[1] | 王啸. 关于特征和与指数和混合均值的一个注记[J]. 《山东大学学报(理学版)》, 2019, 54(12): 97-101. |
[2] | 宋贤梅,熊蕾. Z2a+uZ2a 上线性码的MacWilliams恒等式及自对偶码[J]. 山东大学学报(理学版), 2016, 51(2): 72-78. |
[3] | 邓利华, 邓玉平, Louis W. Shapiro. 对称格路与恒等式[J]. 山东大学学报(理学版), 2015, 50(04): 82-89. |
[4] | 刘修生,刘花璐. 环Fp+vFp上线性码的MacWilliams恒等式[J]. J4, 2013, 48(12): 61-65. |
[5] | 吴校贵, 张建华. 全矩阵代数上保Jacobi恒等式的线性映射[J]. J4, 2009, 44(1): 49-52 . |
[6] | 李志荣,李映辉 . 一类新的包含Genocchi数与Riemann Zeta函数求和的计算公式[J]. J4, 2007, 42(4): 79-83 . |
|