您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (5): 26-32.doi: 10.6040/j.issn.1671-9352.0.2020.676

• • 上一篇    

图的顶点赋权邻域粘连度

师铭,魏宗田,刘勇,翁婷婷   

  1. 西安建筑科技大学理学院, 陕西 西安 710055
  • 发布日期:2021-05-13
  • 作者简介:师铭(1995— ),男,硕士研究生,主要从事网络抗毁性、组合优化问题算法的研究.E-mail: m.shi@xauat.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11661066);陕西省科技基金资助项目(2016JM1035);青海省科技基金资助项目(2017-ZJ-701)

Vertex weighted neighbor tenacity of graphs

SHI Ming, WEI Zong-tian, LIU Yong, WENG Ting-ting   

  1. School of Science, Xian University of Architecture and Technology, Xian 710055, Shaanxi, China
  • Published:2021-05-13

摘要: 将邻域抗毁性该参数推广到顶点赋权图中,提出图的顶点赋权邻域粘连度概念。通过构造组合星图,建立数学规划模型,研究了几类图的顶点赋权邻域粘连度的极值问题。

关键词: 网络抗毁性, 顶点赋权图, 顶点赋权邻域粘连度, 邻域粘连度

Abstract: The neighbor invulnerability parameter is generalized to weighted graphs, and a new concept, vertex weighted neighbor tenacity, is proposed. By constructing two types of composite star graphs, several extreme graphs under vertex weighted neighbor tenacity are studied by using mathematical modeling methods.

Key words: network invulnerability, vertex weighted graph, vertex weighted neighbor tenacity, neighbor tenacity

中图分类号: 

  • O157.6
[1] GUNTHER G, HARTNELL B. On minimizing the effects of betrayals in a resistance movement [C] //Proceedings of the Eighth Manitoba Conference on Numerical Mathematics and Computing, Winnipeg: [s.n] , 1978: 285-306.
[2] 魏宗田. 网络抗毁性和设施系统可靠性研究[D]. 西安: 西北工业大学, 2013. WEI Zongtian. A study of network invulnerability and facility system reliability[D]. Xian: Northwestern Polytechnical University, 2013.
[3] 魏宗田, 刘勇, 杨威, 等. 网络抗毁性[M]. 西安: 西安交通大学出版社, 2015. WEI Zongtian, LIU Yong, YANG Wei, et al. Network invulnerability [M]. Xian: Xian Jiaotong University Press, 2015.
[4] BONDY J A, MURTY U S R. Graph theory with applications[M]. London: Palgrave Macmillan, 1976.
[5] 张胜贵, 李学良, 王力工. 通信系统抗破坏能力研究[J]. 西北工业大学学报, 2002(1): 100-103. ZHANG Shenggui, LI Xueliang, WANG Ligong. Surviability of communication of network [J]. Journal of Northwestern Polytechnical University, 2002(1): 100-103.
[1] 祁忠斌1,叶东2,张和平2. 正则图的环边连通性和环连通性之间的关系[J]. J4, 2009, 44(12): 22-24.
[2] 祁忠斌,张和平 . 一类Fullerene图的1-共振性[J]. J4, 2008, 43(4): 67-72 .
[3] 卢鹏丽,刘文智. 图的广义距离谱[J]. 《山东大学学报(理学版)》, 2020, 55(9): 19-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!