《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (5): 51-56.doi: 10.6040/j.issn.1671-9352.0.2020.538
• • 上一篇
田硕1,时冉冉1,莫贞峰1,郭溆2*
摘要: 利用溶胶凝胶法和超临界干燥技术合成了聚酰亚胺(PI)气凝胶,并将PI气凝胶在800 ℃下进行煅烧,再以煅烧生成的含氮碳气凝胶(C(N))与PI气凝胶复合制备具有高比表面积和独特孔结构的C(N)/PI气凝胶复合材料,用于光催化降解土霉素。结果显示,相比PI气凝胶,C(N)/PI气凝胶复合材料既具有较大的比表面积,又同时含有微孔和介孔,可增加光催化过程中的活性位点和光谱利用率,在6 h内土霉素浓度降低了82%,有效地提高了土霉素的光催化降解效率。
中图分类号:
[1] TRAN M, NGUYEN C, TUONG T, et al. One-pot synthesis of bimetallic Pt/nZVI nanocomposites for enhanced removal of oxytetracycline: roles of morphology changes and Pt catalysis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111:130-140. [2] XU K, YANG X, RUAN L, et al. Superior adsorption and photocatalytic degradation capability of mesoporous LaFeO3/g-C3N4 for removal of oxytetracycline[J]. Catalysts, 2020, 10(3):301-318. [3] ZHOU G, SHAN Y, WANG L, et al. Photoinduced semiconductor-metal transition in ultrathin troilite FeS nanosheets to trigger efficient hydrogen evolution[J]. Nature Communications, 2019, 10(1):399-406. [4] ZHOU G, SHAN Y, HU Y, et al. Half-metallic carbon nitride nanosheets with microgrid mode resonance structure for efficient photocatalytic hydrogen evolution[J]. Nature Communications, 2018, 9(1):3366-3374. [5] ZHANG J, YANG M, LIAN Y, et al. Ce3+ self-doped CeOx/FeOCl: an efficient Fenton catalyst for phenol degradation under mild conditions[J]. Dalton Transactions, 2019, 48(10):3476-3485. [6] ZHOU G, GUO Z, SHAN Y, et al. High-efficiency hydrogen evolution from seawater using hetero-structured T/Td phase ReS2 nanosheets with cationic vacancies[J]. Nano Energy, 2019, 55:42-48. [7] HENG H, YANG J, YIN Y, et al. Effect of precursor types on the performance of polyimide: a metal-free visible-light-driven photocatalyst for effective photocatalytic degradation of pollutants[J]. Catalysis Today, 2020, 340:225-235. [8] 张莉莉,刘素琴,何震. 基于金属沸石咪唑酯骨架的含氮碳材料的催化氧还原性能[J]. 中国有色金属学报, 2018, 28(7):1394-1400. ZHANG Lili, LIU Suqin, HE Zhen. M-ZIFs derived N-containing carbon material for oxygen reduction reaction[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(7):1394-1400. [9] GUO Q, LI H, ZHANG Q, et al. Fabrication, characterization and mechanism of a novel z-scheme Ag3PO4/NG/polyimide composite photocatalyst for Microcystin-LR degradation[J]. Applied Catalysis B: Environmental, 2018, 229:192-203. [10] LIN X, WANG T, WANG C. An advanced flower-like Co-Ni/PI-CNT film electrocatalyst for oxygen evolution reaction[J]. Journal of Alloys and Compounds, 2017, 729(12):19-26. [11] YUEN S, MA C, CHIANG C. Silane grafted MWCNT/polyimide composites-preparation, morphologies and electrical properties[J]. Composites Science and Technology, 2008, 68(14):2842-2848. [12] ATAR N, GROSSMAN E, GOUZMAN I, et al. Atomic-oxygen-durable and electrically-conductive CNT-POSS-polyimide flexible films for space applications[J]. ACS Applied Materials & Interfaces, 2015, 7(22):12047-12056. [13] YU H, SHI R, ZHAO Y, et al. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution[J]. Advanced Materials, 2017, 29(16):1605148. [14] ZHAO Y, NAKAMURA R, KAMIYA K, et al. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation[J]. Nature Communications, 2013, 4(1):2390-2396. [15] TONG X, YANG P, WANG Y, et al. Enhanced photoelectrochemical water splitting performance of TiO2 nanotube arrays coated with an ultrathin nitrogen-doped carbon film by molecular layer[J]. Nanoscale, 2014, 6(12):6692-6700. [16] ZHAO X, YI X, WANG X, et al. Highly efficient visible-light-induced photoactivity of carbonized polyimide aerogel for antibiotic degradation[J]. Nanotechnology, 2020, 31:235707. [17] QI L, TANG X, WANG Z, et al. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach[J]. International Journal of Mining Science and Technology, 2017, 27(2):371-377. [18] LI Y, YANG W, XU X, et al. Micro-/mesoporous carbon nanofibers embedded with ordered carbon for flexible supercapacitors[J]. Electrochim Acta, 2018, 271:591-598. [19] LI H, YU H, QUAN X, et al. Improved photocatalytic performance of heterojunction by controlling the contact facet: high electron transfer capacity between TiO2 and the {110} facet of BiVO4 caused by suitable energy band alignment[J]. Advanced Functional Materials, 2015, 25(20):3074-3080. [20] ZHOU G, HU Y, LONG L, et al. Charged excited state induced by ultrathin nanotip drives highly efficient hydrogen evolution[J]. Applied Catalysis B: Environmental, 2020, 262:118305. [21] KIM Y, COY E, KIM H, et al. Efficient photocatalytic production of hydrogen by exploiting the polydopamine-semiconductor interface[J].Applied Catalysis B: Environmental, 2021, 280:119423. [22] LU Y, YIN P, MAO J M, et al. A stable inverse opal structure of cadmium chalcogenide for efficient water splitting[J]. Journal of Materials Chemistry A, 2015, 3(36):18521-18527. [23] CHENG C, KARUTURI S, LIU L, et al. Quantum dots sensitized TiO2 inverse opal for photoelectrochemical hydrogen generation[J]. Small, 2012, 8(1):37-42. |
[1] | 张国强,刘燕,周爱秋,许效红*. Al掺杂TiO2的制备及酸化处理对其光催化活性的影响[J]. J4, 2010, 45(9): 113-116. |
[2] | 王振华,主沉浮*,董厚欢,蔡元兴 . Pb-N共掺杂TiO2纳米晶的制备、表征及光催化性能的研究[J]. J4, 2007, 42(9): 25-29 . |
|