您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (3): 58-61.doi: 10.6040/j.issn.1671-9352.0.2021.696

• • 上一篇    

基于Reed-Solomon码的量子可同步码

王涛,闫统江*,孙玉花,刘骞   

  1. 中国石油大学(华东)理学院, 山东 青岛 266580
  • 发布日期:2022-03-15
  • 作者简介:王涛(1996— ),男,硕士研究生,研究方向为代数编码学. E-mail:1409010215@s.upc.edu.cn*通信作者简介:闫统江(1973— ),男,博士,教授,研究方向为密码学. E-mail:yantoji@163.com
  • 基金资助:
    国家自然科学基金资助项目(11775306);山东省自然科学基金资助项目(ZR2019MF070)

Quantum synchronizable codes from Reed-Solomon codes

WANG Tao, YAN Tong-jiang*, SUN Yu-hua, LIU Qian   

  1. College of Science, China University of Petroleum(East China), Qingdao 266580, Shandong, China
  • Published:2022-03-15

摘要: 提出了基于Reed-Solomon码构造量子可同步码的一个方法,并给出了这些量子可同步码达到块同步能力上界时的条件。同时,这些量子可同步码对由量子噪声引起的比特错误和相位错误具有最优的纠错能力。

关键词: 量子可同步码, 循环码, Reed-Solomon码

Abstract: A method for constructing quantum synchronizable codes from Reed-Solomon codes is proposed. Certain conditions for these quantum synchronizable codes to reach the upper bound of synchronization capabilities are given. Moreover, these quantum synchronizable codes usually possess optimal error-correcting capability towards bit errors and phase errors.

Key words: quantum synchronizable code, cyclic code, Reed-Solomon code

中图分类号: 

  • O236.2
[1] NIELSEN M, CHUANG I. Quantum computation and quantum information[M]. Cambridge: Cambridge University Press, 2011.
[2] STEANE A. Multiple-particle interference and quantum error correction[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1996, 452(1954): 2551-2577.
[3] CALDERBANK A, RAINS E, SHOR P, et al. Quantum error correction via codes over GF(4)[J]. IEEE Transactions on Information Theory, 1996, 44(4): 1369-1387.
[4] FUJIWARA Y. Block synchronization for quantum information[J]. Physical Review A, 2013, 87(2): 022344.
[5] FUJIWARA Y, VANDENDRIESSCHE P. Quantum synchronizable codes from finite geometries[J]. IEEE Transactions on Information Theory, 2014, 60(11): 7345-7354.
[6] XIE Yixuan, YUAN Jinhong, FUJIWARA Y. Quantum synchronizable codes from quadratic residue codes and their supercodes[C] //2014 IEEE Information Theory Workshop(ITW 2014). New York: IEEE, 2014: 172-176.
[7] LI Lanqiang, ZHU Shixin, LIU Li. Quantum synchronizable codes from the cyclotomy of order four[J]. IEEE Communications Letters, 2018, 23(1): 12-15.
[8] LUO Lan, MA Zhi, LIN Dongdai. Two new families of quantum synchronizable codes[J]. Quantum Information Processing, 2019, 18(277): 1-18.
[9] SHI Xiaoping, YUE Qin, HUANG Xinmei. Quantum synchronizable codes from the Whitemans generalized cyclotomy[J]. Cryptography and Communications, 2021, 13(4): 727-739.
[10] HUFFMAN W, PLESS V. Fundamental of error-correcting codes[M]. Cambridge: Cambridge University Press, 2003.
[11] GADIOLI G, GUARDIA L. Quantum error correction symmetric, asymmetric, synchronizable, and convolutional codes[M]. [S.l.] : Springer International Publishing, 2020.
[12] LUO Lan, MA Zhi. Non-binary quantum synchronizable codes from repeated-root cyclic codes[J]. IEEE Transactions on Information Theory, 2018, 64(3):1461-1470.
[1] 高健,曹永林. 有限域上2-生成元拟扭转码的构造[J]. J4, 2012, 47(10): 31-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!