《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (3): 58-61.doi: 10.6040/j.issn.1671-9352.0.2021.696
• • 上一篇
王涛,闫统江*,孙玉花,刘骞
WANG Tao, YAN Tong-jiang*, SUN Yu-hua, LIU Qian
摘要: 提出了基于Reed-Solomon码构造量子可同步码的一个方法,并给出了这些量子可同步码达到块同步能力上界时的条件。同时,这些量子可同步码对由量子噪声引起的比特错误和相位错误具有最优的纠错能力。
中图分类号:
[1] NIELSEN M, CHUANG I. Quantum computation and quantum information[M]. Cambridge: Cambridge University Press, 2011. [2] STEANE A. Multiple-particle interference and quantum error correction[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1996, 452(1954): 2551-2577. [3] CALDERBANK A, RAINS E, SHOR P, et al. Quantum error correction via codes over GF(4)[J]. IEEE Transactions on Information Theory, 1996, 44(4): 1369-1387. [4] FUJIWARA Y. Block synchronization for quantum information[J]. Physical Review A, 2013, 87(2): 022344. [5] FUJIWARA Y, VANDENDRIESSCHE P. Quantum synchronizable codes from finite geometries[J]. IEEE Transactions on Information Theory, 2014, 60(11): 7345-7354. [6] XIE Yixuan, YUAN Jinhong, FUJIWARA Y. Quantum synchronizable codes from quadratic residue codes and their supercodes[C] //2014 IEEE Information Theory Workshop(ITW 2014). New York: IEEE, 2014: 172-176. [7] LI Lanqiang, ZHU Shixin, LIU Li. Quantum synchronizable codes from the cyclotomy of order four[J]. IEEE Communications Letters, 2018, 23(1): 12-15. [8] LUO Lan, MA Zhi, LIN Dongdai. Two new families of quantum synchronizable codes[J]. Quantum Information Processing, 2019, 18(277): 1-18. [9] SHI Xiaoping, YUE Qin, HUANG Xinmei. Quantum synchronizable codes from the Whitemans generalized cyclotomy[J]. Cryptography and Communications, 2021, 13(4): 727-739. [10] HUFFMAN W, PLESS V. Fundamental of error-correcting codes[M]. Cambridge: Cambridge University Press, 2003. [11] GADIOLI G, GUARDIA L. Quantum error correction symmetric, asymmetric, synchronizable, and convolutional codes[M]. [S.l.] : Springer International Publishing, 2020. [12] LUO Lan, MA Zhi. Non-binary quantum synchronizable codes from repeated-root cyclic codes[J]. IEEE Transactions on Information Theory, 2018, 64(3):1461-1470. |
[1] | 高健,曹永林. 有限域上2-生成元拟扭转码的构造[J]. J4, 2012, 47(10): 31-33. |
|