您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (4): 30-36.doi: 10.6040/j.issn.1671-9352.0.2021.340

• • 上一篇    

拓扑系统中的闭包元和闭包集及其相关性质

高雅,吴洪博*   

  1. 陕西师范大学数学与统计学院, 陕西 西安 710062
  • 发布日期:2022-03-29
  • 作者简介:高雅(1996— ),女,硕士研究生,研究方向为格上拓扑学与非经典数理逻辑. E-mail:910653355@qq.com*通信作者简介:吴洪博(1959— ),男,教授,博士生导师,研究方向为格上拓扑学与非经典数理逻辑. E-mail:wuhb@snnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61572016,11531009,61673250)

Closure elements and closure sets in topological systems and their related properties

GAO Ya, WU Hong-bo*   

  1. College of Mathematics and Statistics, Shaanxi Normal University, Xian 710062, Shaanxi, China
  • Published:2022-03-29

摘要: 由于拓扑系统中闭元的缺失,对拓扑系统中与闭集相关内容的理论及性质研究受到一定程度的制约。首先利用余frame和点集两部分建立对偶拓扑系统——由闭元确定的拓扑系统,对其基本性质进行初步讨论;其次利用闭元给出点集部分的闭包元概念,并对闭包元性质进行讨论;第三,利用闭包元给出拓扑系统中凝聚点和导集的定义,对导集和闭包集的性质进行讨论。最后总结讨论闭包元和闭包集的关系。

关键词: 余frame, 拓扑系统, 闭包元, 凝聚点, 导集, 闭包集

Abstract: Because of the lack of closed elements in topological systems, the research on the theory and properties of closed sets in topological systems is restricted to a certain extent. In this paper, the dual topological system, the topological system determined by closed elements, is established by using the coframe and the point set, and its basic properties are discussed. Secondly, the concept of closure element of point set part is given by using closed element, and the properties of closure element are discussed. Thirdly, the definition of condensation point and derived set in topological system is given by using closure element, and the properties of derived set and closure set are discussed. Finally, the relationship between closure element and closure set is discussed.

Key words: coframe, topological system, closure element, condensation point, derived set, closure set

中图分类号: 

  • O189.1
[1] ENGELKING R. General topology[M]. Warszawa: Panstwowe Wgdawnictwo Naukowe, 1977.
[2] 熊金城. 点集拓扑讲义[M]. 北京: 高等教育出版社, 2003. XIONG Jincheng. Lecture on point set topology[M]. Beijing: Higher Education Press, 2003.
[3] JOHNSTONE P. Stone spaces[M]. Cambridge: Cambridge University Press, 1982.
[4] 郑崇友, 樊磊, 崔宏斌. Frame与连续格[M]. 北京: 首都师范大学出版社, 1994. ZHENG Chongyou, FAN Lei, CUI Hongbin. Introduction to frames and continuous lattices[M]. Beijing: Capital Normal University Press, 1994.
[5] 罗懋康. 拓扑结构的本质:Locale[J]. 西南民族学院学报(自然科学版), 1990, 18(4):29-33. LUO Maokang. Essence of topology: Locale[J]. Journal of Southwest Nationalities College(Natural Science), 1990, 18(4):29-33.
[6] 王国俊. L-fuzzy拓扑空间论[M]. 西安: 陕西师范大学出版社, 1988. WANG Guojun. L-fuzzy topological spaces[M]. Xi’an: Shaanxi Normal University Press, 1988.
[7] 王国俊. 拓扑分子格理论[M]. 西安: 陕西师范大学出版社, 1990. WANG Guojun. Topological molecular lattices[M]. Xian: Shaanxi Normal University Press, 1990.
[8] WANG Guojun. Theory of topological molecular lattices[J]. Fuzzy Sets and Systems, 1992, 47(3):351-376.
[9] 樊磊, 郑崇友. 连通Locale的基本性质[J]. 数学进展, 2001, 30(3):247-251. FAN Lei, ZHENG Chongyou. Basic properties of connected Locale[J]. Advances in Mathematics, 2001, 30(3):247-251.
[10] 梁基华. Locale上的收敛结构[J]. 数学学报, 1995, 38(3):294-300. LIANG Jihua. Convergence and cauchy structures on Locales[J]. Acta Mathematica Sinica, 1995, 38(3):294-300.
[11] 梁基华. 一致Locale的乘积[J]. 数学学报, 1998, 41(2):411-416. LIANG Jihua. The product of uniformity Locale[J]. Acta Mathematica Sinica, 1998, 41(2):411-416.
[12] 罗懋康. 格上拓扑的点式处理[D]. 成都: 四川大学, 1992. LUO Maokang. Pointed disposition of topology on lattices[D]. Chengdu: Sichuan University, 1992.
[13] VICKERS S. Topology via logic[M]. Cambridge: Cambridge University Press, 1989.
[14] 徐罗山, 李高林. 拓扑系统的(强)T2分离性[J]. 扬州大学学报(自然科学版), 2005, 8(4): 1-5. XU Luoshan, LI Gaolin.(Strong)T2 separation in topological systems[J]. Journal of Yangzhou University(Natural Science Edition), 2005, 8(4):1-5.
[15] 李世伦. 拓扑系统的分离性[J]. 四川大学学报(自然科学版), 2002, 39(4):644-648. LI Shilun. The separation in topological systems[J]. Journal of Sichuan University(Natural Science Edition), 2002, 39(4):644-648.
[16] 李高林, 徐罗山. 拓扑系统的紧性和分离性[J]. 模糊系统与数学, 2007, 21(2):6-13. LI Gaolin, XU Luoshan. Compactness and separation in topological systems[J]. Fuzzy Systems and Mathematics, 2007, 21(2):6-13.
[17] 陈仪香. 拓扑系统范畴与子拓扑系统[J]. 陕西师大学报(自然科学版), 1994, 22(4):19-24. CHEN Yixiang. Category of topological systems and sub-topological systems[J]. Journal of Shaanxi Normal University(Natural Science Edition), 1994, 22(4):19-24.
[18] 陈仪香. 拓扑系统范畴完备性与Tychonoff乘积定理[J]. 上海师范大学学报(自然科学版), 1998, 27(3):20-27. CHEN Yixiang. Completeness of category of topological systems and Tychonoff product theorem[J]. Journal of Shanghai Normal University(Natural Science Edition), 1998, 27(3):20-27.
[19] 刘菡, 贺伟. 拓扑系统的子系统[J]. 四川大学学报(自然科学版), 2007, 44(2):229-235. LIU Han, HE Wei. Subsystems of a topological systems[J]. Journal of Sichuan University(Natural Science Edition), 2007, 44(2):229-235.
[20] 冯丹丹, 吴洪博. 拓扑系统的开远域及其应用[J]. 山东大学学报(理学版), 2019, 54(11):90-96. FENG Dandan, WU Hongbo. Open remote neighborhoods of topological systems and their applications[J]. Journal of Shandong University(Natural Science), 2019, 54(11):90-96.
[21] 卢涛, 贺伟. 邻域系统[J]. 山东大学学报(理学版), 2016, 51(6):90-96. LU Tao, HE Wei. Neighborhood systems[J]. Journal of Shandong University(Natural Science), 2016, 51(6):90-96.
[22] 马娜娜, 赵彬. Quantale系统的空间化和Q-Locale化[J]. 陕西师大学报(自然科学版), 2013, 41(2):9-13. MA Nana, ZHAO Bin. The spatialization and Q-localification of a Quantale systems[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2013, 41(2):9-13.
[23] 吴洪博, 石慧君. Heyting系统及其H-空间化表示形式[J]. 电子学报, 2012, 40(5):995-999. WU Hongbo, SHI Huijun. Heyting syestems and its representation by H-spatialization[J]. Acta Electronica Sinica, 2012, 40(5):995-999.
[24] 吴洪博, 石慧君. Heyting系统及其H-Locale化形式[J]. 数学学报(中文版), 2012, 55(6):1119-1130. WU Hongbo, SHI Huijun. Heyting syestems and its H-Localification[J]. Acta Mathematica Sinica(Chinese Series), 2012, 55(6):1119-1130.
[1] 冯丹丹,吴洪博. 拓扑系统中开远域及其应用[J]. 《山东大学学报(理学版)》, 2019, 54(11): 90-96.
[2] 卢涛,贺伟. 邻域系统[J]. 山东大学学报(理学版), 2016, 51(6): 65-69.
[3] 孙守斌,孟广武 . LF拓扑空间的Dα-导集[J]. J4, 2008, 43(5): 63-65 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!