《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (1): 48-58.doi: 10.6040/j.issn.1671-9352.2.2021.035
• • 上一篇
刘东,洪宇*,苏玉兰,张民
LIU Dong, HONG Yu*, SU Yu-lan, ZHANG Min
摘要: 将条件变分自编码器作为辅助模块,引入预训练语言模型的编码解码过程,通过数据增强(潜在的语义扩充)以提高模型的鲁棒性。通过建立陈述句与疑问句之间的高维分布联系,由分布采样实现一对多的问题生成。结果表明,融合条件变分自编码器不仅能生成多样性的问题,也有助于提升问题生成的模型性能。在基于SQuAD数据集划分的2个答案可知问题生成数据集Split1和Split2上,BLEU-4值分别被提升到20.75%和21.61%。
中图分类号:
[1] PAN L, LEI W, CHUA T S, et al. Recent advances in neural question generation[J/OL]. arXiv, 2019. https://arxiv.org/abs/1905.08949v3. [2] QIU X, SUN T, XU Y, et al. Pre-trained models for natural language processing: a survey[J]. Science China Technological Sciences, 2020, 63(10):1-26. [3] BAO H, DONG L, WEI F, et al. Unilmv2: pseudo-masked language models for unified language model pre-training[C] //International Conference on Machine Learning. New York: PMLR, 2020: 642-652. [4] WANG T, WAN X. T-CVAE: transformer-based conditioned variational autoencoder for story completion[C] //International Joint Conferences on Artificial Intelligence.[S.l.] : IJCAI, 2019: 5233-5239. [5] SERBAN I, SORDONI A, LOWE R, et al. A hierarchical latent variable encoder-decoder model for generating dialogues[C] //Proceedings of the AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2017. [6] RAJPURKAR P, ZHANG J, LOPYREVK, et al. Squad: 100,000+ questions for machine comprehension of text[J/OL]. arXiv, 2016. https://arxiv.org/abs/1606.05250v2. [7] DU X, SHAO J, CARDIEC. Learning to ask: neural question generation for reading comprehension[J/OL]. arXiv, 2017. https://arxiv.org/abs/1705.00106v1. [8] ZHOU Q, YANG N, WEI F, et al. Neural question generation from text: a preliminary study[C] //National CCF Conference on Natural Language Processing and Chinese Computing. Cham: Springer, 2017: 662-671. [9] BOWMAN S R, VILNIS L, VINYALS O, et al. Generating sentences from a continuous space[J/OL]. arXiv, 2015. https://arxiv.org/abs/1511.06349v3. [10] SUN X, LIU J, LYU Y, et al. Answer-focused and position-aware neural question generation[C] //Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2018: 3930-3939. [11] GU J, LU Z, LI H, et al. Incorporating copying mechanism in sequence-to-sequence learning[J/OL]. arXiv, 2016. https://arxiv.org/abs/1603.06393v3. [12] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //Advances in Neural Information Processing Systems. [S.l.] :Neural information processing systems foundation, 2017: 5998-6008. [13] CHAN Y H, FAN Y C. A recurrent BERT-based model for question generation[C] //Proceedings of the 2nd Workshop on Machine Reading for Question Answering. Stroudsburg:Association for Computational Linguistics, 2019: 154-162. [14] VARANASI S, AMIN S, NEUMANN G.CopyBERT: a unified approach to question generation with self-attention[C] //Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI. Stroudsburg:Association for Computational Linguistics, 2020: 25-31. [15] DONG L, YANG N, WANG W, et al. Unified language model pre-training for natural language understanding and generation[J/OL]. arXiv, 2019. https://arxiv.org/abs/1905.03197. [16] 黄民烈. 现代自然语言生成[M]. 北京:电子工业出版社,2021: 98-100. HUANG Minlie. Modern natural language generation[M]. Beijing:Publishing House of Electronics Industry of China, 2021: 98-100. [17] SHARMA S, ASRI L E, SCHULZH, et al. Relevance of unsupervised metrics in task-oriented dialogue for evaluating natural language generation[J/OL]. arXiv, 2017. https://arxiv.org/abs/1706.09799. [18] PAPINENI K, ROUKOS S, WARD T, et al. Bleu: a method for automatic evaluation of machine translation[C] //Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2002: 311-318. [19] DENKOWSKI M, LAVIEA. Meteor universal: language specific translation evaluation for any target language[C] //Proceedings of the Ninth Workshop on Statistical Machine Translation. Stroudsburg:Association for Computational Linguistics, 2014: 376-380. [20] LIN C Y. Rouge: a package for automatic evaluation of summaries[C] //Proceedings of Workshop on Text Summarization of ACL. Stroudsburg:Association for Computational Linguistics, 2004. [21] GU X D, CHO K H, HA J W, et al. Dialogwae: multimodal response generation with conditional wasserstein auto-encoder[J/OL]. arXiv, 2018. https://arxiv.org/pdf/1805.12352.pdf. [22] ZHAO Y, NI X, DING Y, et al. Paragraph-level neural question generation with maxout pointer and gated self-attention networks[C] //Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2018: 3901-3910. |
[1] | 谭金源,刁宇峰,杨亮,祁瑞华,林鸿飞. 基于BERT-SUMOPN模型的抽取-生成式文本自动摘要[J]. 《山东大学学报(理学版)》, 2021, 56(7): 82-90. |
|