《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (7): 121-126.doi: 10.6040/j.issn.1671-9352.0.2021.657
• • 上一篇
Xiufeng YANG(),Jianghua FAN*()
摘要:
利用标量混合变分不等式解集非空有界的充要条件, 以及凸函数序列的Mosco收敛性和对偶锥的连通性, 得到了自反Banach空间中向量混合变分不等式的弱有效解集为非空有界集的充要条件。
中图分类号:
1 | GIANNESSI F. Theorems of alternative, quadratic programs and complementarity problems[C]//Variational Inequalities and Complementarity Problems, New York: John Wiley and Sons, 1980: 151-186. |
2 |
GOLESTANT M , SADEGHI H , TAVAN Y . Nonsmooth multiobjective problems and generalized vector variational inequalities using quasi-efficiency[J]. Journal of Optimization Theory and Applications, 2018, 179 (3): 896- 916.
doi: 10.1007/s10957-017-1179-z |
3 |
HUANG Xuexiang , YANG Xiaoqi . Characterizations of nonemptiness and compactness of the set of weakly efficient solutions for convex vector optimization and applications[J]. Journal of Mathematical Analysis and Applications, 2001, 264 (2): 270- 287.
doi: 10.1006/jmaa.2001.7635 |
4 |
DENG Sien . Boundedness and nonemptiness of the efficient solution sets in multiobjective optimization[J]. Journal of Optimization Theory and Applications, 2010, 144 (1): 29- 42.
doi: 10.1007/s10957-009-9589-1 |
5 |
HU Rong , FANG Yaping . On the nonemptiness and compactness of the solution sets for vector variational inequalities[J]. Optimization, 2010, 59 (7): 1107- 1116.
doi: 10.1080/02331930903395600 |
6 |
HUANG Xuexiang , FANG Yaping , YANG Xiaoqi . Characterizing the nonemptiness and compactness of the solution set of a vector variational inequality by scalarization[J]. Journal of Optimization Theory and Applications, 2014, 162 (2): 548- 558.
doi: 10.1007/s10957-012-0224-1 |
7 |
FAN Jianghua , JING Yan , ZHONG Renyou . Nonemptiness and boundedness of solution sets for vector variational inequalities via topological method[J]. Journal of Global Optimization, 2015, 63 (1): 181- 193.
doi: 10.1007/s10898-015-0279-2 |
8 | WANG Xing , HUANG Nanjing . Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces[J]. Journal of Industrial & Management Optimization, 2012, 9 (1): 57- 74. |
9 |
ZHONG Renyou , HUANG Nanjing . Stability analysis for minty mixed variational inequality in reflexive Banach spaces[J]. Journal of Optimization Theory and Applications, 2010, 147 (3): 454- 472.
doi: 10.1007/s10957-010-9732-z |
10 | AUSLENDER A , TEBOULLE M . Asymptotic cones and functions in optimization and variational inequalities[M]. New York: Springer, 2003. |
11 |
ADLY S , ERNST E . Well-positioned closed convex sets and well-positioned closed convex functions[J]. Journal of Global Optimization, 2004, 29 (4): 337- 351.
doi: 10.1023/B:JOGO.0000047907.66385.5d |
12 |
ZHONG Renyou , HUANG Nanjing , CHO Y . Boundedness and nonemptiness of solution sets for set-valued vector equilibrium problems with an application[J]. Journal of Inequalities and Applications, 2011, 2011 (1): 1- 15.
doi: 10.1186/1029-242X-2011-1 |
13 |
SALINETTI G , WETS J B . On the relations between two types of convergence for convex functions[J]. Journal of Mathematical Analysis and Applications, 1977, 60 (1): 211- 226.
doi: 10.1016/0022-247X(77)90060-9 |
No related articles found! |
|