您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (9): 1-15.doi: 10.6040/j.issn.1671-9352.0.2023.168

•   •    下一篇

元计算: 零信任下的新型计算范式

成秀珍1(),吕卫锋2,徐明辉1,*(),潘润宇1,于东晓1,王晨旭1,禹勇3,肖雪4   

  1. 1. 山东大学计算机科学与技术学院, 山东 青岛 266237
    2. 北京航空航天大学计算机学院, 北京 100191
    3. 陕西师范大学计算机科学学院, 陕西 西安 710119
    4. 浪潮集团, 山东 济南 250101
  • 收稿日期:2023-04-23 出版日期:2023-09-20 发布日期:2023-09-08
  • 通讯作者: 徐明辉 E-mail:xzcheng@sdu.edu.cn;mhxu@sdu.edu.cn
  • 作者简介:成秀珍(1970—), 女, 教授, 博士, 研究方向为网络空间安全与隐私保护、物联网和区块链. E-mail: xzcheng@sdu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2022YFB4501000);国家自然科学基金资助项目(62232010);山东省优秀青年科学基金资助项目(海外)(2022HWYQ-038)

Meta computing: a new computing paradigm under zero trust

Xiuzhen CHENG1(),Weifeng LYU2,Minghui XU1,*(),Runyu PAN1,Dongxiao YU1,Chenxu WANG1,Yong YU3,Xue XIAO4   

  1. 1. School of Computer Science and Technology, Shandong University, Qingdao 266237, Shandong, China
    2. School of Computer Science and Engineering, Beihang University, Beijing 100191, China
    3. School of Computer Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
    4. Inspur Group, Jinan 250101, Shandong, China
  • Received:2023-04-23 Online:2023-09-20 Published:2023-09-08
  • Contact: Minghui XU E-mail:xzcheng@sdu.edu.cn;mhxu@sdu.edu.cn

摘要:

互联网的普及对计算范式的发展产生了重大影响。随着新一代信息技术基础设施的不断完善, 学术界与工业界在持续探索新的计算范式, 以实现对算力的充分挖掘。海量物联网(internet of things, IoT)设备产生的庞大数据逐渐超出了以云服务器为代表的高性能后端的处理能力, 边缘计算(edge computing)通过云边端协同缓解了这一问题, 但仍存在算力利用率低、算/存容错性低,以及计算资源整合度低等困难与挑战。元计算(meta computing)是一种新型计算范式, 旨在零信任基础上, 打破算力藩篱, 整合网络中所有的可用计算与存储资源, 为各项任务提供高效、安全可靠、可容错的个性化服务, 同时利用密码学技术保护敏感数据信息, 确保用户数据的隐私性, 保证任务结果的准确性与可靠性, 最终实现“对任何一个人或者一项任务整个网络就是一台计算机”, 即“网络即计算机(network-as-a-computer, NaaC)”, 也称为“元计算机”(meta computer)。本文分析了元计算的三大功能目标, 据此提出了一个包含云边端资源、设备管理与零信任计算管理模块的元计算机架构。在该架构中, 设备管理模块将海量异构设备的资源抽象为可以自由操控的对象, 零信任计算管理模块则根据用户任务需求直接调度计算资源, 完成强容错的计算任务并输出可验证的计算结果, 最后进行结算。本文在剖析元计算机架构与功能特性的基础上, 分析了实现元计算机面临的技术挑战, 给出了元计算“从局部过渡到整体”的发展思路, 预测了元计算的未来应用场景, 为未来元计算的落地与发展规划出合理的突破路线。

关键词: 元计算, 零信任, 网络即计算机, 元计算机, 算力整合, 数据安全

Abstract:

The popularity of the Internet has had a significant impact on the development of computing paradigms. With the continuous improvement of the new generation of information technology infrastructures, academia and industry have been constantly exploring new computing paradigms to fully exploit computing powers. The huge data generated by massive IoT devices gradually exceeds the processing capability of the high-performance back-end represented by cloud servers. Edge computing alleviates this problem through cloud-edge-end coordination, but there still exist difficulties and challenges such as low computing power utilization, low computing and storage fault tolerance capability, and low integration of computing resorces. "Meta Computing" is a new computing paradigm that aims to break down the barriers of computing powers in a zero-trust environment. It can integrate all available connected computing and storage resources, provide efficient, byzantine fault-tolerant, and personalized services, while protecting the data and user privacy. Furthermere, meta computing can ensure the correctness of results, and realize "the entire network can be regarded as a giant computer for a user", that is, "Network-as-a-Computer, NaaC", which is also called "Meta Computer". The meta computer architecture includes a number of function modules including a device management module and a zero-trust computing management module, as well as the cloud-edge-end device resources. The device management module abstracts massive heterogeneous device resources into objects that can be freely manipulated, while the zero-trust computing management module can transparently allocate computing resources to user tasks according to service requirements, complete the tasks with strong fault tolerance and verifiable outputs, and finally settle accounts. Based on the analysis of the architecture and the functional characteristics of meta computing, we put forward suggestions and advice on the development path of meta computing, that is, transitioning from local to global, and analyze the most-influential future application scenarios of meta computing and provide a reasonable plan for the implementation and development of meta computing in future.

Key words: meta computing, zero trust, network-as-a-computer, meta computer, computing power integration, data security

中图分类号: 

  • TP309

图1

计算范式发展历史"

图2

现有计算范式的局限性"

图3

元计算机架构"

图4

元计算的典型应用"

1 CHELLAPPA R. Intermediaries in cloud computing: a new computing paradigm[C]//INFORMS Annual Meeting. Dallas, 1997: 26-29.
2 ORAM A . Peer-to-Peer: harnessing the power of disruptive technologies[M]. Sebastopol: O'Reilly Media, Inc., 2001: 1- 450.
3 BARKAI D. Technologies for sharing and collaborating on the Net[C]//Proceedings of the First International Conference on Peer-to-Peer Computing. Linkoping: IEEE Computer Society, 2001: 13-28.
4 International Telecommunication Union. Internet reports 2005: The Internet of Things[R]. Tunis: ITU, 2005.
5 SATYANARAYANAN M , BAHL P , CACERES R , et al. The case for VM-based cloudlets in mobile computing[J]. IEEE Pervasive Computing, 2009, 8 (4): 14- 23.
doi: 10.1109/MPRV.2009.82
6 BONOMI F, MILITO R, ZHU J, et al. Fog computing and its role in the Internet of Things[C]//Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing. Helsinki: ACM, 2012: 13-16.
7 WITT B, WARD L. IBM Operating system/360 concepts and facilities[R]. New York: International Business Machine Corporation, 1965.
8 郭得科, 王怀民. 网络计算典型形态的发展回顾和愿景展望[J]. 中国计算机学会通讯, 2022, 18 (2): 39- 45.
GUO Deke , WANG Huaimin . The review and prospects of typical forms of network computing[J]. Communications of the CCF, 2022, 18 (2): 39- 45.
9 FOSTER I , KESSELMAN C . The grid: blueprint for a new computing infrastructure[M]. San Francisco: Morgan Kaufmann Publishers, 1998.
10 DE ROURE D, JENNINGS N R, SHADBOLT N R. The semantic grid: a future e-science infrastructure[M]// BERMAN F, FOX G, HEY T. Grid computing: making the global infrastructure a reality. Online: John Wiley & Sons, Ltd, 2003: 437-470.
11 FOSTER I, GEISLER J, TUECKE S. MPI on the I-WAY: a wide-area, multimethod implementation of the message passing interface[C]//Proceedings of the Second MPI Developer's Conference. Notre Dame: IEEE Computer Society, 1996: 10-17.
12 FOSTER I, GEISLER J, NICKLESS B, et al. Software infrastructure for the I-WAY high-performance distributed computing experiment[C]//Proceedings of 5th IEEE International Symposium on High Performance Distributed Computing. Syracuse: IEEE Computer Society, 1996: 562-571.
13 STEVENS R , WOODWARD P , DEFANTI T , et al. From the I-WAY to the national technology grid[J]. Communications of the ACM, 1997, 40 (11): 50- 60.
doi: 10.1145/265684.265692
14 FOSTER I , KESSELMAN C . Globus: a metacomputing infrastructure toolkit[J]. The International Journal of Supercomputer Applications and High Performance Computing, 1997, 11 (2): 115- 128.
doi: 10.1177/109434209701100205
15 GRIMSHAW A S , WULF W A . The legion team: The legion vision of a worldwide virtual computer[J]. Communications of the ACM, 1997, 40 (1): 39- 45.
doi: 10.1145/242857.242867
16 SMARR L , CATLETT C E . Metacomputing[J]. Communications of the ACM, 1992, 35 (6): 44- 52.
doi: 10.1145/129888.129890
17 KROL M, MASTORAKIS S, ORAN D, et al. Compute first networking: distributed computing meets ICN[C]//Proceedings of the 6th ACM Conference on Information-Centric Networking. Macao: ACM, 2019: 67-77.
18 WEISER M . The computer for the 21st century[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 1999, 3 (3): 3- 11.
doi: 10.1145/329124.329126
19 郑增威, 吴朝晖. 普适计算综述[J]. 计算机科学, 2003, 30, 18- 29.
ZHENG Zengwei , WU Zhaohui . A survey of pervasive computing[J]. Computer Science, 2003, 30, 18- 29.
20 NIEUWDORP E . The pervasive discourse: an analysis[J]. Computers in Entertainment (CIE), 2007, 5 (2): 13.
doi: 10.1145/1279540.1279553
21 孙其博, 刘杰, 黎羴, 等. 物联网: 概念、架构与关键技术研究综述[J]. 北京邮电大学学报, 2010, 33 (3): 1- 9.
SUN Qibo , LIU Jie , LI Shan , et al. Internet of things: summarize on concepts, architecture and key technology problem[J]. Journal of Beijing University of Posts and Telecommunications, 2010, 33 (3): 1- 9.
22 ITU-T Y. Overview of ubiquitous networking and of its support in NGN[S]. ITU-T Recommendation. 2009.
23 DILLEY J , MAGGS B , PARIKH J , et al. Globally distributed content delivery[J]. IEEE Internet Computing, 2002, 6 (5): 50- 58.
doi: 10.1109/MIC.2002.1036038
24 CoreMark: an eembc benchmark[EB/OL]. [2023-02-03]. https://www.eembc.org/coremark/scores.php.
[1] 刘利钊,于佳平,刘健,李俊祎,韩哨兵,许华荣,林怀钏,朱顺痣. 基于量子辐射场的大数据安全存储寻址算法[J]. 山东大学学报(理学版), 2018, 53(7): 65-74.
[2] 王侃1,吴磊2,3,郝蓉4. 一个弹性分布式数据安全方案[J]. J4, 2011, 46(9): 39-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[2] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[3] 李敏1,2,李歧强1. 不确定奇异时滞系统的观测器型滑模控制器[J]. 山东大学学报(理学版), 2014, 49(03): 37 -42 .
[4] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[5] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[6] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[7] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .
[8] 程智1,2,孙翠芳2,王宁1,杜先能1. 关于Zn的拉回及其性质[J]. J4, 2013, 48(2): 15 -19 .
[9] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[10] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .