您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (11): 35-44.doi: 10.6040/j.issn.1671-9352.0.2022.096

•   • 上一篇    下一篇

分段线性删失分位数回归模型的变点估计

王小刚(),冯可馨*()   

  1. 北方民族大学数学与信息科学学院, 宁夏 银川 750021
  • 收稿日期:2022-02-18 出版日期:2023-11-20 发布日期:2023-11-07
  • 通讯作者: 冯可馨 E-mail:wxg@nun.edu.cn;1377649746@qq.com
  • 作者简介:王小刚(1980—), 男, 教授, 博士, 研究方向为数量经济与风险管理. E-mail: wxg@nun.edu.cn
  • 基金资助:
    宁夏自然科学基金资助项目(2023AAC02043);宁夏高等教育一流学科建设基金资助项目(NXYLXK2017B09);北方民族大学服务宁夏九大产业基金资助项目(FWNX36);北方民族大学研究生创新项目(YCX21159)

Change point estimation of piecewise linear censored quantile regression model

Xiaogang WANG(),Kexin FENG*()   

  1. School of Mathematics and Information Science, North Minzu University, Yinchuan 750021, Ningxia, China
  • Received:2022-02-18 Online:2023-11-20 Published:2023-11-07
  • Contact: Kexin FENG E-mail:wxg@nun.edu.cn;1377649746@qq.com

摘要:

在删失分位数回归模型中引入分段线性结构, 改进原有模型仅考虑线性结构、静态性和无交互效应等缺陷。分段线性的前提假设使得部分协变量在不同状态下呈现不同结构且在变点处连续, 保留模型易于计算和解释性强的优点。基于格点搜索法得到变点位置和模型参数估计, 推导估计的大样本性质。数值模拟结果验证不同误差结构下变点和模型参数估计具有有效性和稳健性。实证分析表明家庭金融资产与受教育水平正相关, 且资产规模存在集聚效应, 资产规模越大的家庭其金融资产越多。受教育水平在本科之前存在一个变点, 突破受教育水平变点后, 不同规模家庭的金融资产都有质的提升, 但变点后高资产规模家庭的金融资产增速要高于中低资产规模家庭的增速。

关键词: 变点估计, 删失分位数回归模型, 格点搜索法, 大样本性质, 分段线性结构

Abstract:

A piecewise linear censored quantile regression model is proposed in censored data model, which could improve the shortcomings of linear structure, static and non-interaction effects. It assumes a piecewise linear form in different regions of the domain of partial covariate but still continuous at an unknown change point, which retaining the advantages of calculation and interpretability. The estimators for change point and regression coefficients are obtained via grid search method, the asymptotic normality of all parameters are derived. The effectiveness and robustness of the estimation are verified by numerical simulation in both homoscedastic and heteroscedastic cases. There is a positive correlation between household financial assets and educational level, the aggregation effect is found in the scale of assets, that is, the financial assets are more when the scale of the households were larger. There is a change point in the educational level before undergraduate, and the financial assets improve qualitatively after breaking through the change point of educational level. The growth rate of financial assets of high-asset households are higher than that of low and medium-asset households.

Key words: change point estimation, censored quantile regression model, grid search method, large sample property, piecewise linear structure

中图分类号: 

  • O212.2

表1

分位数回归与均值回归数值模拟结果"

n 回归模型 模型参数同方差异方差
BIAS SD ESE CP BIAS SD ESE CP
200分位数回归
(τ=0.25)
α -0.028 0.147 0.155 0.865 -0.052 0.142 0.137 0.825
β 0.011 0.183 0.176 0.860 -0.161 0.191 0.187 0.820
γ -0.035 0.310 0.317 0.915 -0.045 0.329 0.323 0.865
ζ 0.002 0.027 0.029 0.950 -0.004 0.051 0.051 0.855
t -0.004 0.192 0.185 0.865 0.008 0.206 0.213 0.850
分位数回归
(τ=0.50)
α 0.007 0.114 0.119 0.925 -0.011 0.116 0.121 0.915
β 0.004 0.068 0.066 0.925 0.005 0.142 0.155 0.905
γ -0.021 0.259 0.289 0.935 -0.031 0.320 0.294 0.880
ζ -0.001 0.022 0.025 0.940 -0.005 0.039 0.043 0.915
t -0.009 0.127 0.118 0.895 0.007 0.165 0.148 0.885
分位数回归
(τ=0.75)
α 0.045 0.128 0.133 0.905 0.068 0.235 0.207 0.830
β 0.017 0.188 0.157 0.860 0.081 0.207 0.193 0.815
γ -0.056 0.307 0.348 0.890 -0.072 0.319 0.385 0.810
ζ -0.002 0.027 0.027 0.930 0.005 0.050 0.043 0.860
t 0.014 0.201 0.167 0.855 0.015 0.259 0.241 0.835
均值回归α -0.009 0.105 0.106 0.925 0.017 0.169 0.170 0.895
β 0.002 0.122 0.119 0.940 -0.003 0.134 0.131 0.920
γ -0.005 0.162 0.160 0.905 0.009 0.221 0.227 0.840
ζ 0.020 0.260 0.281 0.920 -0.047 0.270 0.274 0.775
t 0.005 0.095 0.099 0.900 -0.008 0.114 0.112 0.850
500分位数回归
(τ=0.25)
α -0.012 0.157 0.155 0.880 -0.029 0.162 0.183 0.830
β 0.017 0.121 0.101 0.905 -0.017 0.147 0.135 0.825
γ -0.009 0.203 0.207 0.920 -0.001 0.211 0.193 0.870
ζ -0.002 0.016 0.017 0.950 -0.001 0.031 0.031 0.925
t -0.021 0.126 0.107 0.900 -0.011 0.146 0.139 0.865
分位数回归
(τ=0.50)
α 0.002 0.072 0.077 0.930 0.005 0.144 0.126 0.925
β -0.001 0.045 0.040 0.925 0.007 0.091 0.097 0.910
γ -0.005 0.179 0.158 0.940 0.004 0.192 0.170 0.920
ζ -0.001 0.016 0.014 0.955 -0.005 0.026 0.027 0.925
t -0.001 0.093 0.095 0.920 -0.002 0.085 0.099 0.895
分位数回归
(τ=0.75)
α 0.018 0.078 0.079 0.925 0.031 0.144 0.129 0.850
β -0.002 0.109 0.097 0.875 0.051 0.144 0.135 0.850
γ -0.015 0.186 0.217 0.895 -0.023 0.169 0.204 0.850
ζ 0.001 0.015 0.015 0.945 -0.003 0.028 0.026 0.915
t 0.010 0.097 0.080 0.905 0.011 0.099 0.124 0.855
均值回归α -0.001 0.067 0.067 0.930 -0.005 0.099 0.100 0.925
β -0.002 0.115 0.116 0.945 -0.002 0.120 0.121 0.945
γ -0.004 0.141 0.137 0.925 0.004 0.183 0.182 0.905
ζ 0.001 0.147 0.142 0.945 -0.019 0.147 0.149 0.850
t -0.002 0.055 0.052 0.935 -0.006 0.065 0.059 0.875

表2

家庭金融资产数据描述性统计分析"

最小值 1/4分位数 中位数 均值 3/4分位数 最大值
家庭金融资产y(万元) -21.242 7.994 34.540 106.204 106.627 5 622.800
受教育水平x 1.000 3.000 4.000 4.210 6.000 9.000
健康状况z1 1.000 2.000 2.667 2.647 3.000 5.000
所处地区z2 1.000 1.000 1.000 1.771 2.000 3.000
婚姻状况z3 0.000 0.000 1.000 0.589 1.000 1.000

图1

中国家庭金融资产和受教育水平箱线图"

表3

不同分位数下家庭金融资产估计结果"

τ α β γ ζ1 ζ2 ζ3 t $\frac{\beta+\gamma}{\beta}$
0.25估计值 6.874 5 4.234 9 16.499 4 -3.165 4 -2.847 7 5.338 8 6.772 7 4.896 1
标准差 0.760 6 0.133 2 4.745 7 0.222 6 0.151 3 0.330 3 0.092 5
*** *** ** *** *** *** ***
0.50估计值 29.372 1 10.737 2 43.330 3 -7.161 2 -11.050 2 12.391 3 6.693 9 5.035 5
标准差 1.222 3 0.194 9 1.530 8 0.322 5 0.331 6 0.597 8 0.062 8
*** *** *** *** *** *** ***
0.75估计值 109.230 9 21.061 3 130.087 5 -12.418 3 -38.951 6 24.267 0 6.615 1 7.176 6
标准差 3.227 4 0.767 1 9.061 7 0.669 3 1.265 8 1.427 8 0.145 4
*** *** *** *** *** *** ***
1 甘犁, 尹志超, 谭继军. 中国家庭金融调查报(2014)[M]. 成都: 西南财经大学出版社, 2015.
GAN Li , YIN Zhichao , TAN Jijun . China household finance survey report(2014)[M]. Chengdu: Southwestern University of Finance and Economics Press, 2015.
2 吴文生, 李硕, 谭常春, 等. 中国家庭风险资产配置的理论与实证: 基于信息不确定性视角下的研究[J]. 系统工程理论与实践, 2022, 42 (1): 60- 75.
WU Wensheng , LI Shuo , TAN Changchun , et al. The theory and evidence of Chinese household risk asset allocation from the perspective of information uncertainty[J]. Systems Engineering: Theory and Practice, 2022, 42 (1): 60- 75.
3 KOENKER R , BASSETT G . Regression quantiles[J]. Econometrica, 1978, 46 (1): 33- 50.
doi: 10.2307/1913643
4 POWELL J L . Censored regression quantiles[J]. Journal of Econometrics, 1986, 32 (1): 143- 155.
doi: 10.1016/0304-4076(86)90016-3
5 PORTNOY S . Censored regression quantiles[J]. Journal of the American Statistical Association, 2003, 98 (464): 1001- 1012.
doi: 10.1198/016214503000000954
6 刘生龙. 教育和经验对中国居民收入的影响: 基于分位数回归和审查分位数回归的实证研究[J]. 数量经济技术经济研究, 2008, 4, 75- 85.
LIU Shenglong . The impact of education and experience on residents' income in China: empirical research based on quantile regression and review quantile regression[J]. Journal Quantitative and Technical Economics, 2008, 4, 75- 85.
7 FRUMENTO P , BOTTAI M . An estimating equation for censored and truncated quantile regression[J]. Computational Statistics & Data Analysis, 2017, 113, 53- 63.
8 张倩倩, 郑茜, 王纯杰, 等. 删失分位数回归在医疗费用中的应用[J]. 数理统计与管理, 2018, 37 (6): 1050- 1062.
ZHANG Qianqian , ZHENG Xi , WANG Chunjie , et al. Application of censored quantile regression in medical cost[J]. Journal of Applied Statistics and Management, 2018, 37 (6): 1050- 1062.
9 李忠桂, 何书元. 右删失数据下分位数回归的光滑经验似然检验[J]. 应用概率统计, 2019, 35 (2): 153- 164.
LI Zhonggui , HE Shuyuan . Smoothed empirical likelihood testing for quantile regression models under right censorship[J]. Chinese Journal of Applied Probability and Statistics, 2019, 35 (2): 153- 164.
10 KIM M , LEE S . Nonlinear expectile regression with application to Value-at-Risk and expected shortfall estimation[J]. Computational Statistics & Data Analysis, 2016, 94, 1- 19.
11 XIE Shangyu , ZHOU Yong , WAN A T K . A varying coefficient expectile model for estimating value at risk[J]. Journal of Business & Economic Statistics, 2014, 32 (4): 576- 592.
12 刘晓倩, 周勇. 风险度量半参数变系数符合Expectile回归模型及应用[J]. 系统工程理论与实践, 2020, 40 (8): 2176- 2192.
LIU Xiaoqian , ZHOU Yong . The semiparametric varying-coefficient composite expectile regression model in risk measurement and its application[J]. Systems Engineering: Theory & Practice, 2020, 40 (8): 2176- 2192.
13 MUGGEO V M R . Estimating regression models with unknown break-points[J]. Statistics in Medicine, 2003, 22 (19): 3055- 3071.
doi: 10.1002/sim.1545
14 HANSEN B E . Regression kink with an unknown threshold[J]. Journal of Business & Economic Statistics, 2017, 35 (2): 228- 240.
15 ZHANG Feipeng , LI Qunhua . Robust bent line regression[J]. Journal of Statistical Planning and Inference, 2017, 185, 41- 55.
doi: 10.1016/j.jspi.2017.01.001
16 LI Chenxi , WEI Ying , CHAPPELL R , et al. Bent line quantile regression with application to an allometric study of land mammals' speed and mass[J]. Biometrics, 2011, 67 (1): 242- 249.
doi: 10.1111/j.1541-0420.2010.01436.x
17 ZHANG Feipeng , LI Qunhua . A continuous threshold expectile model[J]. Computational Statistics & Data Analysis, 2017, 116, 49- 66.
18 ZHOU Xiaoying , ZHANG Feipeng . Bent line quantile regression via a smoothing technique[J]. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2020, 13 (3): 216- 228.
doi: 10.1002/sam.11453
19 SILVERMAN B W . Density estimation for statistics and data analysis[M]. London: Chapman & Hall, 1986.
20 王小刚, 李冰. 含多个结构突变的分段线性Tobit回归模型及应用[J]. 统计与决策, 2021, 37 (19): 21- 25.
WANG Xiaogang , LI Bing . A piecewise linear Tobit regression model with multiple structural mutations and its application[J]. Statistics & Decision, 2021, 37 (19): 21- 25.
21 李实, 魏众, 古斯塔夫森B. 中国城镇居民的财产分配[J]. 经济研究, 2000, (3): 16- 23.
LI Shi , WEI Zhong , GUSTAFSSON B . Distribution of wealth among urban township households in China[J]. Economic Research Journal, 2000, 35 (3): 16- 23.
22 BROWN S , TAYLOR K . Household debt and financial assets: evidence from Germany, Great Britain and the USA[J]. Journal of the Royal Statistical Society (Series A: Statistics in Society), 2008, 171 (3): 615- 643.
doi: 10.1111/j.1467-985X.2007.00531.x
23 牛树海, 杨梦瑶. 中国区域经济差距的变迁及政策调整建议[J]. 区域经济评论, 2020, 2, 37- 43.
NIU Shuhai , YANG Mengyao . Changes and policy adjustment suggestions of regional economic disparity in China[J]. Regional Economic Review, 2020, 2, 37- 43.
24 KOENKER R . Quantile regression[M]. New York: Cambridge University Press, 2005.
25 HUBER P. The behavior of maximum likelihood estimates under nonstandard conditions[C]// Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeleg, USA: University of California Press, 1967, 1: 221-233.
26 HE Xuming , SHAO Qiman . A general Bahadur representation of M-estimators and its application to linear regression with nonstochastic designs[J]. The Annals of Statistics, 1996, 24 (6): 2608- 2630.
[1] 任鹏程,徐静,李新民. 风险价值VaR的区间估计[J]. 山东大学学报(理学版), 2017, 52(2): 85-90.
[2] 王小刚,李冰. 基于核函数方法的逐段线性Tobit回归模型估计[J]. 《山东大学学报(理学版)》, 2020, 55(6): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 薛岩波 杨波 陈贞翔. 小波分析在土木工程结构健康监测系统中的应用研究[J]. J4, 2009, 44(9): 28 -31 .
[2] 冯青华,王文洽 . 二维扩散方程的一类交替分组方法[J]. J4, 2007, 42(6): 46 -51 .
[3] 郭亭,鲍晓明 . P137G点突变对嗜热细菌木糖异构酶酶活性及热稳定性的影响[J]. J4, 2006, 41(6): 145 -148 .
[4] 刘修生 . C[a,b]上半范数的两个问题[J]. J4, 2006, 41(5): 84 -86 .
[5] 于少伟. 基于云理论的新的不确定性推理模型研究[J]. J4, 2009, 44(3): 84 -87 .
[6] 郑妍, 庞琳, 毕慧, 刘玮, 程工. 基于情感主题模型的特征选择方法[J]. 山东大学学报(理学版), 2014, 49(11): 74 -81 .
[7] 银俊成1,2,曹怀信1. Hilbert 空间L2(R)上的小波保持子[J]. J4, 2012, 47(4): 57 -61 .
[8] 戴珍香,李曙光,亓兴勤 . 波分复用星形单跳网中3信道的传输调度问题[J]. J4, 2007, 42(2): 46 -50 .
[9] 刘新民,崔玉军* . Banach空间非柱形域上微分系统解的存在性[J]. J4, 2008, 43(4): 1 -05 .
[10] 丁卫平1,2,3,王建东2,段卫华2,施佺1. 一种求解属性约简优化的协同粒子群算法[J]. J4, 2011, 46(5): 97 -102 .