《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (11): 71-75.doi: 10.6040/j.issn.1671-9352.0.2022.556
摘要:
设S是幺半群, A为S-系,基于S-系的多余子系的概念, 研究D-多余子系的概念及其基本性质;最后, 结合S-系根的定义, 定义并研究了S-系的D-根的若干性质。
中图分类号:
1 | 刘仲奎, 乔虎生. 半群的S-系理论[M]. 北京: 科学出版社, 2008. |
LIU Zhongkui , QIAO Husheng . The S-act theory of semigroups[M]. Beijing: Science Press, 2008. | |
2 | 乔虎生, 刘仲奎. 半群引论[M]. 北京: 科学出版社, 2019. |
QIAO Husheng , LIU Zhongkui . An introduction to semigroups[M]. Beijing: Science Press, 2019. | |
3 | ANDERSON F W , FULLER K R . Rings and categories of modules[M]. New York: Springer-Verlag, 1974. |
4 | BEYRANVAND R , MORADI F . Small submodules with respect to an arbitrary submodule[J]. Journal of Algebra and Related Topics, 2015, 3 (2): 43- 51. |
5 | SAFAEEYAN S , SHIRAZI N S . Essential submodules with respect to an arbitrary submodule[J]. Journal of Mathematical Extension, 2013, 7 (3): 15- 27. |
6 |
SANGWIROTJANAPAT S , PIANSKOOL S . T-small submodules with respect to an arbitrary submodule[J]. JP Journal of Algebra, Number Theory and Applications, 2018, 40 (1): 91- 112.
doi: 10.17654/NT040010091 |
7 | KHOSRAVI R , ROUEENTAN M . Co-uniform and hollow S-acts over monoids[J]. Communications of the Korean Mathematical Society, 2022, 37 (2): 347- 358. |
8 | ABDULKAREEM S A . On hollow acts[J]. IOP Conference Series: Materials Science and Engineering, 2020, 928 (4): 1- 14. |
[1] | 李晓霞,乔虎生. 融合余积AEuclid ExtraCA@BA的性质[J]. 《山东大学学报(理学版)》, 2022, 57(10): 11-15. |
[2] | 李伟,许文锋,李宏余. 基于独立子系统的模糊DEA模型研究[J]. J4, 2012, 47(9): 78-83. |
|