您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (8): 13-20.doi: 10.6040/j.issn.1671-9352.0.2023.453

• • 上一篇    

四维欧氏空间中直纹面及其结构函数

曲瑞祥,田涵宇,于延华*   

  1. 东北大学理学院数学系, 辽宁 沈阳 110819
  • 发布日期:2025-07-25
  • 通讯作者: 于延华(1978— ),女,副教授,博士,研究方向为几何分析、微分几何. E-mail:yyh_start@126.com
  • 作者简介:曲瑞祥(1999— ),男,硕士研究生,研究方向为几何分析、微分几何. E-mail:a18954672168@163.com*通信作者:于延华(1978— ),女,副教授,博士,研究方向为几何分析、微分几何. E-mail:yyh_start@126.com
  • 基金资助:
    中央高校基本科研业务专项资金资助项目(N2104007)

Ruled surfaces in four-dimensional Euclidean space and their structural functions

QU Ruixiang, TIAN Hanyu, YU Yanhua*   

  1. School of Science, Northeastern University, Shenyang 110819, Liaoning, China
  • Published:2025-07-25

摘要: 在四维欧氏空间中,利用腰曲线的定义,提出直纹面的结构函数,将三维欧氏空间中的不可展直纹面及其标准方程推广到四维欧氏空间。通过直纹面的结构函数来研究曲面自身的性质,得到4类特殊伴随直纹面的结构函数、导线和腰曲线之间的关系,并对这些直纹面进行分类。最后给出导线是Mannheim曲线和第三型斜角螺线时结构函数的具体表达式,并计算此时伴随直纹面的平均曲率向量场。

关键词: 四维欧氏空间, 直纹面, 结构函数, 平均曲率向量场, 特殊曲线

Abstract: In four-dimensional Euclidean space, utilizing the definition of a waist curve, the structure functions of ruled surfaces is proposed, extending the non-developable ruled surfaces and their standard equations in three-dimensional Euclidean space to four-dimensional Euclidean space. By studing the properties of the surface itself through the structural function of the ruled surface, the relationships between the structural functions, directors, and waist curves of four types of special associated ruled surfaces are obtained, and these four kinds of ruled surfaces are classified. Finally, specific expressions for the structural functions are given when the director is a Mannheim curve and a skew helix of the third type, and the mean curvature vector field of the associated ruled surface in these cases is calculated.

Key words: four-dimensional Euclidean space, ruled surface, structure function, mean curvature, special curve

中图分类号: 

  • O185
[1] RAVANI B, WANG J W.Computer aided geometric design of line constructs[J]. Journal of Mechanical Design, 1991, 113(4):363-371.
[2] HOSCHEK J. Eine verallgemeinerung des satzes von holditch[J]. Monatshefte Für Mathematik, 1975, 80(2):93-99.
[3] POTTMANN H, WALLNER J. Computational line geometry[J]. Journal of Theoretical Biology, 2001, 86(507):207-223.
[4] ELBER G, FISH R. 5-axis freeform surface milling using piecewise ruled surface approximation[J]. Journal of Manufacturing Science & Engineering, 1997, 119:383-387.
[5] LIU H L, YU Y H, JUNG S D. Invariants of non-developable ruled surfaces in Euclidean 3-space[J]. Beitrage zur Algebra und Geometrie, 2014, 55(1):189-199.
[6] YU Y H, YANG Y, LIU H L. Centroaffine ruled surfaces in R3[J]. Journal of Mathematical Analysis and Applications, 2010, 365(2):683-693.
[7] LIU H L. Characterizations of ruled surfaces with lightlike ruling in minkowski 3-space[J]. Results in Mathematics, 2009, 56(1):357.
[8] SAJI K. Singularities of non-degenerate 2-ruled hypersurfaces in 4-space[J]. Hiroshima Mathematical Journal, 2002, 32:309-323.
[9] ALTIN M, KAZAN A, YOON D W. 2-ruled hypersurfaces in Euclidean 4-space[J]. Journal of Geometry and Physics, 2021, 166:104236.
[10] MATSUD H, YOROZU S. On generalized Mannheim curves in Euclidean 4-space[J]. Nihonkai Mathematical Journal, 2009, 20(1):33-56.
[11] ALI A, TURGU M. Some characterizations of slant helices in the Euclidean space En[J]. Hacettepe Journal of Mathematics and Statistics, 2010, 39:327-336.
[1] 毕晓冬 . 完全正则半群的一个构造方法[J]. J4, 2007, 42(1): 40-43 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!