您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4

• 论文 • 上一篇    下一篇

关于有限群的c-正规性的几点注记

刘晓蕾   

  1. 山西财经大学应用数学系, 山西 太原 030006
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2006-10-24 发布日期:2006-10-24
  • 通讯作者: 刘晓蕾

On generalized c-normality of finite groups

LIU Xiao-lei   

  1. Department of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China

  • Received:1900-01-01 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: LIU Xiao-lei

摘要:

推广了有限群中的c-正规性概念,引入了c-次正规性和c-π-拟正规性概念, 并利用新概念给出了有限群可解的几个条件,证明了:设G是有限群, 那么,下述条件是等价的:(ⅰ) G有一个极大子群M在G中是c-π-拟正规的而且是可解的。 (ⅱ) G的每一个具有合指数的极大子群在G中是c-π-拟正规的。 (ⅲ) G的每一个极大子群在G中是c-次正规的。 (ⅳ) G是可解的。

关键词: 有限群, c-π-拟正规性, c-次正规性

Abstract:

For a finite group G, a subgroup H is called c-normal in G if there is a normal subgroup K such that G=HK and H∩K≤HG, the largest normal subgroup of G contained in H. c-normality was replaced by c-π-quasinormality or c-sub-normality. The following were showed equivalent. First, there is a solvable maximal subgroup M such that M is c-π-quasi-normal in G.Second, every maximal subgroup with composite index of G is c-π-quasi-normal in G. Third, every maximal subgroup of G is c-subnormal in G. Fourth, G is solvable.

Key words: c-π-quasinormality

, c-subnormality,

finite groups

中图分类号: 

  • O152
[1] 陈松良. 具有非交换Sylow子群的p2q3阶群的构造[J]. 山东大学学报(理学版), 2015, 50(12): 93-97.
[2] 陈松良,李惊雷,欧阳建新. 论p3q阶群的构造[J]. J4, 2013, 48(2): 27-31.
[3] 刘晓蕾. 关于E.Alemany等人的一个定理的一个注记[J]. J4, 2012, 47(10): 7-13.
[4] 刘晓蕾 王燕鸣. 有限群中的q-补及其应用[J]. J4, 2009, 44(10): 87-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!