您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2008, Vol. 43 ›› Issue (5): 50-53 .doi:

• 论文 • 上一篇    下一篇

高阶p-Laplacian算子方程组边值问题多个正解的存在性

唐秋云1,王明高2,刘衍胜3   

  1. 1. 万杰医学院数学教研室, 山东 淄博 255213; 2. 万杰医学院口腔系, 山东 淄博 255213;3. 山东师范大学数学科学学院, 山东 济南 250014
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2006-10-24 发布日期:2006-10-24
  • 通讯作者: 唐秋云

The existence of multiple positive solutions for higher order boundary value systems with p-Laplacian operator

TANG Qiu-yun1, WANG Ming-gao2, LIU Yan-sheng3   

  1. 1. Section of Mathematics, Wanjie Medical College, Zibo 255213, Shandong, China;2. Department of Stomatology, Wanjie Medical College, Zibo 255213, Shandong, China;3. Department of Mathematics, Shandong Normal University, Jinan 250014, Shandong, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: TANG Qiu-yun

摘要:

应用锥拉伸和锥压缩不动点理论讨论了含p-Laplacian算子的高阶微分方程组边值问题多个正解的存在性.

关键词: p-Laplacian算子; 高阶微分方程组; 锥拉伸和锥压缩

Abstract:

With the method of compression and expansion of a cone, the existence of multiple positive solutions for higher order boundary value systems with a p-Laplacian operator was investigated.

Key words: p-Laplacian operator; higher order boundary value systems; compression and expansion of cone

中图分类号: 

  • O175.8
[1] 李凡凡,刘锡平*,智二涛. 分数阶时滞微分方程积分边值问题解的存在性[J]. J4, 2013, 48(12): 24-29.
[2] 俎冠兴. 边值问题的多重正解[J]. J4, 2009, 44(12): 71-76.
[3] 姚庆六. 一类奇异次线性Sturm Liouville 边值问题[J]. J4, 2009, 44(10): 36-38.
[4] 许万银. 一类拟线性Neumann问题的多重解[J]. J4, 2009, 44(10): 39-42.
[5] 代丽美. 正指数Emden-Fowler方程脉冲奇异边值问题的PC1([0,1],R+)正解[J]. J4, 2008, 43(12): 10-14.
[6] 续晓欣 梁月亮 桑彦彬. 三阶两点边值问题单调递减正解的存在惟一性[J]. J4, 2008, 43(12): 84-87.
[7] 徐 玲 . 上下解方法与三点边值共振问题的可解性[J]. J4, 2008, 43(5): 66-70 .
[8] 秦小娜,贾梅*,刘帅. 具Caputo导数分数阶微分方程边值问题正解的存在性[J]. J4, 2013, 48(10): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!