您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2011, Vol. 46 ›› Issue (5): 110-115.

• SEWM 2011 会议 • 上一篇    下一篇

一种主动式的半监督最近邻学习方法

杨洋,王立宏*,刘其成   

  1. 烟台大学计算机学院, 山东 烟台 264005
  • 收稿日期:2010-12-20 发布日期:2011-05-25
  • 通讯作者: 王立宏(1970- ),女,教授,博士,主要研究方向为数据挖掘与知识发现.
  • 作者简介:杨洋(1986- ),男,硕士研究生,主要研究方向为数据挖掘与知识发现. Email: m-yay@163.com
  • 基金资助:

    国家自然科学基金资助项目(61070118);山东省高等学校科技计划项目(J10LG27)

Active semi-supervised nearest neighbour learning

YANG Yang, WANG Li-hong*, LIU Qi-cheng   

  1. School of Computer Science & Technology, Yantai University, Yantai 264005, Shandong, China
  • Received:2010-12-20 Published:2011-05-25

摘要:

同时使用标号点和成对约束信息,设计了半监督的最近邻分类算法。为了解决可能无法为某些数据点分配类标号的问题,提出了ratio排序方法以降低冲突点的个数,并采用基于Citation-kNN评分的主动式学习策略,通过获取一些与周围数据点不一致的点的标号来改善半监督学习的效果,以寻找有价值的监督信息。实验结果表明,本文的学习策略可以提高算法的聚类效果,其CRI指标好于COP-kmeans和CCL算法。

关键词: 半监督聚类;主动学习;监督信息;最近邻

Abstract:

A semi-supervised nearest neighbour classification algorithm was proposed, in which both labeled points and pair-wise constraints were employed to determinate the label of data points. To solve the problem that some data points may not be assigned to any class label, the ratio sorting was designed to reduce the number of conflict points. An active learning strategy based on CitationkNN score was developed to search valuable supervision information and improve the quality of clustering by querying the label of a point incompatible with its neighbours. Experiments show that the learning strategy can improve the clustering performance, and the comparison with COP-kmeans and CCL illustrates the efficiency of the active SNN from the view of CRI.

Key words: semi-supervised clustering; active learning; supervision information; nearest neighbour

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!