JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (06): 53-58.doi: 10.6040/j.issn.1671-9352.0.2014.331

Previous Articles     Next Articles

Gorenstein projective N-complexes

ZHU Rong-min   

  1. Department of Mathematics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2014-07-15 Revised:2014-11-11 Online:2015-06-20 Published:2015-07-31

Abstract: The properties of Gorenstein projective of N-complexes are investigated, and the Gorenstein projective dimensions of N-complex are characterized. It is shown that for an arbitrary associative ring R, any N-complex C of R-module is Gorenstein projective if and only if each Cn is Gorenstein projective.

Key words: N-complex, preenvelope, Gorenstein projective N-complex

CLC Number: 

  • O153.3
[1] ENOCHS E E, GARCÍ ROZAS J R. Gorenstein injective and projective complexes[J]. Communications in Algebra, 1998, 26(5):1657-1674.
[2] GARCÍA ROZAS J R. Covers and envelops in the category of complexes of modules[M]. Boca Raton, FL: CRC Press, 1999.
[3] LIU Zhongkui, ZHANG Chunxia. Gorenstein injective complexes of module over noether ring[J]. Journal of Algebra, 2009, 321:1546-1554.
[4] 杨刚. Gorenstein 投射、内射和平坦复形[J]. 数学学报, 2011, 03:451-460. YANG Gang. Gorenstein projective, injective and flat complexes[J]. Acta Mathematica Sinica:Chinese Series, 2011, 03:451-460.
[5] KAPRANOV M M. On the q-analog of homological algebra[J]. Preprint 1996. arxiv:q-alg/9611005.
[6] ESTRADA S. Monominal Algebra over Infinite Quivers. Applications to N-complexes of modules[J]. Communications in Algebra, 2007, 35:3214-3225.
[7] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin-New York: Walter de Gruyter 2000.
[8] ENOCHS E E, JENDA O M G, XU Jinzhong. Orthogonality in the category of complexes[J]. Mathematical Journal of Okayama University, 1996, 38:25-46.
[9] HOLM H. Gorenstein homological dimension[J]. Journal of Pure and Applied Algebra, 2004, 189(1):167-193.
[10] GLILLESPIE J. The flat model structure on Ch(R)[J]. Transactions of the American Mathematical Society, 2004, 356(8):3369-3390.
[11] GLILLESPIE J, HOVEY M. Gorenstein model structures and generalized derived categories[J]. Proceedings of the Edinburgh Mathematical Soc: Series 2, 2010, 53:675-696.
[12] GLILLESPIE J. The homotopy category of N-complexes is a homotopy category[J]. Journal of Homotopy and Related Structures, 2012: 1-14.
[13] TIKARADZE A. Homological constructins on N-complexes[J]. Journal of Pure and Applied Algebra, 2002, 176:213-222.
[1] YAN Ting-ting, LIU Zhong-kui. Coresolution dimensions [J]. J4, 2013, 48(8): 5-14.
[2] SONG Xian-mei. Note on the existence of F-covers [J]. J4, 2012, 47(10): 4-6.
[3] XING Jian-min, . Relative Copure projective modules [J]. J4, 2007, 42(8): 27-29 .
[4] FENG Xiao and ZHANG Shun-hua . τ-Flat test modules and τ-flatcover [J]. J4, 2007, 42(1): 31-34 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!