JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (06): 69-74.doi: 10.6040/j.issn.1671-9352.0.2014.585
Previous Articles Next Articles
XU Man
CLC Number:
[1] LI Wantong, HUO Haifeng. Existence and global attractivity of positive periodic solutions of functional differential equations with impulses[J]. Nonlinear Analysis, 2004, 59(6):857-877. [2] CHOISY M, GUEGAN J F, ROHANI P. Dynamics of infectious diseases and pulse vaccination:teasing apart the embedded resonance effects[J]. Physica D, 2006, 223(1):26-35. [3] DONOFRIO A. On pulse vaccination strategy in the SIR epidemic model with vertical transmission[J]. Appl Math Lett, 2005, 18(7):729-732. [4] GAO Shujing, CHEN Lansun, NIETO J J, et al. Analysis of a delayed epidemic model with pulse vaccination and saturation incidence[J]. Vaccine, 2006, 24(35-36):6037-6045. [5] TANG Sanyi, CHEN Lansun. Density-dependent birth rate, birth pulses and their population dynamic consequences[J]. J Math Biol, 2002, 44(2):185-199. [6] COOKE K L, KAPLAN J L. A periodicity threshold theorem for epidemic and population growth[J]. Math Biosci, 1976, 31(1-2):87-104. [7] GOPALSAMY K. Stability and oscillation in delay differential equations of population dynamics[J]. Dordrecht: Kluwer Academic Publishers Group, 1992. [8] BAI Dingyong, XU Yuantong. Periodic solutions of first order functional differential equations with periodic deviations[J]. Comput Math Appl, 2007, 53(9):1361-1366. [9] LIU Xilan, LI Wantong. Existence and uniqueness of positive periodic solutions of functional differential equations[J]. J Math Anal Appl, 2004, 293(1):28-39. [10] WANG Haiyan. Positive periodic solutions of functional differential equations[J]. Journal Differential Equations, 2004, 202(2):354-366. [11] WU Yuexiang. Existence of positive periodic solutions for a functional differential equations with a parameter[J]. Nonlinear Analysis, 2008, 68(7):1954-1962. [12] JIN Zhilong, WANG Haiyan. A note on positive periodic solutions of delayed differential equations[J]. Appl Math Lett, 2010, 23(5):581-584. [13] MA Ruyun, CHEN Ruipeng, CHEN Tianlan. Existence of positive periodic solutions of nonlinear first order delayed differential equations[J]. J Math Anal Appl, 2011, 384(2):527-535. [14] YAN Jurang. Existence of positive periodic solutions of impulsive functional differential equations with two parameters[J]. J Math Anal Appl, 2007, 327(2):854-868. [15] LI Yongkun, FAN Xuanlong, ZHAN Lili. Positive periodic solutions of functional differential equations with impulses and a parameter[J]. Comput Math Appl, 2008, 56(10):2556-2560. [16] LI Xiaoyue, LIN Xiaoning, JIANG Daqing. Existence and multiplicity of positive periodic solutions to functional differential equations with impulses effecta[J]. Nonlinear Anal, 2005, 62(4):683-701. [17] LI Jianli, SHEN Jianhua. Existence of positive periodic solutions to a class of functional differential equations with impulse[J]. Math Appl, 2004, 17(3):456-463. [18] YAN Jurang. Existence and global attractivity of positive periodic solutions for an impulsive Lasota-Wazewska model[J]. J Math Anal Appl, 2003, 279(1):111-120. |
|