JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (08): 62-71.doi: 10.6040/j.issn.1671-9352.0.2014.340
Previous Articles Next Articles
GONG Zeng-tai, WEI Zhao-qi
CLC Number:
[1] CHOQUET G. Theory of capacities[J]. Annals det Institut Fourier, 1955, 5:131-295. [2] MUROFUSHI T, SUGENO M. An integral of fuzzy measures and the Choquet integral as integral with respect to a fuzzy measure[J]. Fuzzy Sets and Systems, 1989, 29(2):201-227. [3] MUROFUSHI T, SUGENO M. A theory of fuzzy measures: representations, the Choquet integral, and null sets[J]. Journal of Mathematical Analysis and Applications, 1991, 159(2):532-549. [4] JANG L C, KWON J S. On the represtentation of Choquet of set-valued functionsand null set[J]. Fuzzy Sets and Systems, 2000,112(2):233-239. [5] ZHANG Deli, GUO Caimei. Fuzzy integrals of set-valued mappings and fuzzy mappings[J]. Fuzzy Sets and Systems, 1995, 75(1):103-109. [6] GRABISCH M, MUROFUSHI T, SUGENO M. Fuzzy measures and integrals: theory and applications[M]. Heidelberg: Physica-verlag, 2000. [7] GRABISC M, NGUYEN H T, WALKER E A. Fundamentals of uncertainty calculi with application to fuzzy inference[M]. Dordrecht: Kluwer Academic, 1995. [8] WANG Zhengyuan, KWONG L, WONG M, et al. Nonlinear nonnegative multi-regressions based on Choquet integrals[J]. International Journal of Approximate Reasoning, 2000, 25(2):71-87. [9] XU Kebin, WANG Zhengyuan, PHENG H, et al. Cliassificication by nonlinear integral projections[J]. IEEE Transactions on Fuzzy System, 2003, 11(2):187-201. [10] HUANG Yan, WU Congxin. Real-valued Choquet integral for set-valued mappings[J]. International Journal of Approximate Reasoning, 2014, 55(2):683-688. [11] ZHANG Deli, WANG Zixiao. On set-valued fuzzy integrals[J]. Fuzzy Sets and Systems, 1993, 56(2):237-241. [12] 哈明虎, 吴从炘. 模糊测度与模糊积分理论[M]. 北京: 科学出版社, 1998. HA Minghu, WU Congxin. Fuzzy measure and fuzzy integral theory[M]. Beijing: Sciense Press, 1998. [13] JANG L C, KIL B M, KIM Y K, et al. Some properties of Choquet integrals of set-valued functions[J]. Fuzzy Sets and Systems, 1997, 91(1):95-98. |
[1] | GONG Zeng-tai, KOU Xu-yang. Representation of Choquet integral of the set-valued functions with respect to fuzzy measures and the characteristic of its primitive [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 1-9. |
[2] | YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space [J]. J4, 2013, 48(1): 78-82. |
[3] | LI Yan-hong,WANG Gui-jun . Strongly order continuity and pseudo-S-property of generalized fuzzy valued Choquet integrals [J]. J4, 2008, 43(4): 76-80 . |
|