J4

• Articles • Previous Articles     Next Articles

Additivity of the gexpectation for affinerelated random variables

QIN Dong   

  1. School of Mathematics, Shandong Univ., Jinan 250100, Shandong, China
  • Received:2006-11-22 Revised:1900-01-01 Online:2006-10-24 Published:2006-10-24
  • Contact: QIN Dong

Abstract: When g satisfies g(y,0,t)=0,(y,t)∈R×[0,T], the g-expectation is additive for all affinerelated random variables if and only if g=μt|zt|+vtzt. If g need not satisfy g(y,0,t)R×[0,T], the g-expectation is additivity for all affinerelated random variables if and only if g=μt|zt|+vtzt+vt′yt, where μt, vt, vt′ are continuous functions on [0,T].

Key words: additivity , affinerelated, g-expectation

CLC Number: 

  • O211
[1] LIU Zhi. The law of large numbers under subliear expectations and its applications [J]. J4, 2012, 47(7): 76-80.
[2] JI Pei-sheng, SUN Lin, CHEN Jian-hui. Jordan multiplicative isomorphisms on Spin factors [J]. J4, 2011, 46(8): 1-3.
[3] GONG Zeng-tai, XIE Ting. The generalized additivity,transformation  theorem  and  the  defect  of  additivity  for  fuzzy  measures [J]. J4, 2010, 45(10): 53-60.
[4] . Multiplicative Jordan triple isomorphisms on Jordan algebras [J]. J4, 2009, 44(6): 1-3.
[5] LIN Qian,SHI Yu-feng . Convergence theorems for generalized g-expectations [J]. J4, 2008, 43(6): 28-30 .
[6] LIU Jie . Relation between constancy of g-expectations and g(y,0,t)=0 [J]. J4, 2008, 43(2): 58-61 .
[7] ZHAO Guo-qing . The problem of optimal stopping via gexpectations [J]. J4, 2007, 42(6): 27-30 .
[8] SHI Heng-lu,DENG Wei and QI Lu . Properties of maximal mathematical expectation [J]. J4, 2007, 42(2): 92-94 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!