JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (10): 6-10.doi: 10.6040/j.issn.1671-9352.0.2016.128

Previous Articles     Next Articles

Lipschitz commutators of fractional integrals on Herz-type spaces with variable exponents

WANG Jin-ping, ZHAO Kai*   

  1. School of Mathematics and Statistics, Qingdao University, Qingdao 266071, Shandong, China
  • Received:2016-03-25 Online:2016-10-20 Published:2016-10-17

Abstract: By the boundedness of commutators for fractional integrals with Lipschitz functions and the Riesz potential on variable Lebesgue spaces, based on the atomic decomposition of Herz-type Hardy spaces with variable exponents, using the properties of Lipschitz functions and the estimations of the classical inequalities, we proved that the Lipschitz commutators of fractional integrals are bounded from Herz-type Hardy spaces with variable exponents to variable Herz spaces.

Key words: fractional integral, variable exponent, Herz-Hardy space, commutator, boundedness

CLC Number: 

  • O174.2
[1] KOVÁCIK O, RÁKOSNÍK J. On spaces Lp(x) and Wk,p(x)[J]. Czechoslovak Math J, 1991, 41(4):592-618.
[2] DIENING L, HARJULEHTO P, HÄSTÖ P, et al. Lebesgue and Sobolev spaces with variable exponents[M]. Heidelberg: Springer, 2013: 67-92.
[3] CRUZ-URIBE D, FIORENZA A. Variable Lebesgue spaces[M]. Heidelberg: Birkhäuser, 2013.
[4] XU Jingshi. Variable Besov and Triebel-Lizorkin spaces[J]. Ann Acad Sci Fenn Math, 2008, 33(2):511-522.
[5] IZUKI M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization[J]. Anal Math, 2010, 36(36):33-50.
[6] NAKAI E, SAWANO Y. Hardy spaces with variable exponents and generalized Campanato spaces[J]. J Funct Anal, 2012, 262(9):3665-3748.
[7] WANG Hongbin, LIU Zongguang. The Herz type Hardy spaces with variable exponent and their application[J]. Taiwanese J Math, 2012, 16(4):1363-1389.
[8] WANG Hongbin, FU Zunwei, LIU Zongguang. Higher order commutators of Marcinkiewicz integrals on variable Lebesgue spaces[J]. Acta Mathematica Scientia A, 2012, 32(6):1092-1101.
[9] CRUZ-URIBE D, FIORENZA A, NEUGEBAUER C J. The maximal function on variable Lp(Rn)spaces[J]. Ann Acad Sci Fenn Math, 2003, 28(4):223-238.
[10] WANG Liwei, QU Meng, SHU Lisheng. Higher order commutators of fractional integral operator on the homogeneous Herz spaces with variable exponent[J]. Journal of Function Spaces & Applications, 2013, 18(2013):415-425.
[11] IZUKI M. Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent[J]. Rendiconti del Circolo Matematico di Palermo, 2010, 59(3):461-472.
[1] TAO Shuang-ping, GAO Rong. Estimates of multilinear fractional integrals and maximal operators on weighted Morrey spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 30-37.
[2] XIN Yin-ping, TAO Shuang-ping. Boundedness of Marcinkiewicz integrals operators with variable kernels on Herz-type Hardy spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 38-43.
[3] ZHANG Shen-gui. Multiple solutions of Navier boundary value problem for fourth-order elliptic equation with variable exponents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 32-37.
[4] ZHAO Huan, ZHOU Jiang. Commutators of multilinear Calderón-Zygmund operator on Herz-type Hardy spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 42-50.
[5] LU Qiang-de, TAO Shuang-ping. Boundedness of commutators of Calderón-Zygmund operators and fractional integrals in homogeneous grand variable exponent Lebesgue spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 54-58.
[6] YAO Jun-qing, ZHAO Kai. Commutators of fractional integrals on Herz-Morrey spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 100-105.
[7] MA Xiao-jie, ZHAO Kai. Boundedness of commutators of the fractional Hardy operators on weighted spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 106-110.
[8] WANG Jie, QU Meng, SHU Li-sheng. Boundedness of the Littlewood-Paley operators and cummutators on the Herz spaces with variable exponents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 9-18.
[9] HUANG Ling-ling, ZHAO Kai. Boundedness of the parameterized Marcinkiewicz integral operators with variable kernels on weighted Campanato spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 1-5.
[10] GOU Yin-xia, TAO Shuang-ping, DAI Hui-ping. Weighted estimates of fractional integral with rough kernel and its commutators on Herz-type Hardy Spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 80-87.
[11] LI Hao-jing, CHEN Zheng-li*, LIANG Li-li. Note on the Schrdinger uncertainty relation#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 67-73.
[12] ZHOU Shu-juan, LIU Su-ying. Boundedness of linear operators on the anisotropic #br# weighted Herz-type Hardy spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 74-78.
[13] ZHAO Kai, JI Chun-jing, HUANG Zhi. Boundedness of the commutator of some Marcinkiewicz integral on Herz-type Hardy spaces [J]. J4, 2013, 48(6): 1-4.
[14] JIANG Xiao-yu. Composition followed by differentiation from Bloch-type into Zygmund-type space [J]. J4, 2013, 48(4): 51-56.
[15] CHEN Cui. n-differentiation composition operators between weighted Banach  spaces of holomorphic functions [J]. J4, 2013, 48(4): 57-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!