JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (2): 24-29.doi: 10.6040/j.issn.1671-9352.0.2016.269
Previous Articles Next Articles
GAO Han-peng, YIN Xiao-bin*
CLC Number:
[1] NICHOLSON W K. Lifting idempotents and exchange rings[J]. Transactions of the American Mathematical Society, 1977, 229:269-278. [2] CAMILLO V, SIMÓN J J. The nicholson-varadarajan theorem on clean linear transformations[J]. Glasgow Mathematical Journal, 2002, 44(3):365-369. [3] CHEN Hanying. On strongly J-clean rings[J]. Communications in Algebra, 2010, 38:3790-3804. [4] CAMILLO V P, YU H P. Exchange rings, unit and idempotents[J]. Communications in Algebra, 1994, 22(12):4737-4749. [5] FAN Lingling, YANG Xiande. On rings whose elements are the sum of a unit and a root of a fixed polynomial[J]. Communications in Algebra, 2008, 36(1):269-278. [6] NICHOLSON W K. Strongly clean rings and fitting's lemma[J]. Communications in Algebra, 1999, 27:3583-3592. [7] NICHOLSON W K, ZHOU Y. Endomorphism that are the sum of a unit and a root of a fixed polynomial[J]. Canadian Mathematical Bulletin-Bulletin Canadien de Mathematiques, 2006, 49(2):265-269. [8] WANG Zhou, CHEN Jianlong. A note on clean rings[J]. Algebra Colloquium, 2012, 14(3):537-540. [9] WANG Zhou, CHEN Jianlong. Pseudo Drazin inverses in associative rings and banach algebras[J]. Linear Algebra and Its Applications, 2012, 437(6):1332-1345. [10] YING Zhiling, CHEN Jianlong. On quasipolar rings[J]. Algebra Colloquium, 2012, 19:683-692. [11] ARA P. Strongly regular rings have stable range one [J]. Proceedings of the American Mathematical Society, 1996, 124(124):3293-3298. |
[1] | WANG Xiu-lan. Semiboolean group rings [J]. J4, 2012, 47(10): 18-20. |
|