JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (3): 16-23.doi: 10.6040/j.issn.1671-9352.2.2016.053
Previous Articles Next Articles
KANG Hai-yan1, MA Yue-lei2
CLC Number:
[1] BACKSTROM L, DWORK C, KLEINBERG J. Wherefore art thou r3579x?: anonymized social networks, hidden patterns, and structural steganography[C] // Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 181-190. [2] HOMER N, SZELINGER S, REDMAN M, et al. Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays[J]. Plos Genetics, 2008, 4(8):e1000167. [3] MACHANAVAJJHALA A, KOROLOVA A, SARMA A D. Personalized social recommendations: accurate or private[C] // Proceedings of the VLDB Endowment VLDB. Endowment Hompage Archive PVLDB, 2011, 4(7):440-450. [4] NARAYANAN A, SHMATIKOV V. Robust de-anonymization of large sparse datasets[C] // Proceedings of the 2008 IEEE Symposium on Security and Privacy. Washington: IEEE, 2008: 111-125. [5] WANG R, LI Y F, WANG X F, et al. Learning your identity and disease from research papers: information leaks in genome wide association study[C] // Proceedings of the 16th ACM Conference on Computer and Communications Security. New York: ACM, 2009: 534-544. [6] 周水庚, 李丰, 陶宇飞, 等. 面向数据库应用的隐私保护研究综述[J]. 计算机学报, 2009,32(5):847-861. ZHOU Shuigeng, LI Feng, TAO Yufei, et al. Privacy preservation in database applications: a Survey[J]. Chinese Journal of Computers, 2009, 32(5):847-861. [7] EVFIMIEVSKI A, SRIKANT R, AGRAL A, et al. Privacy preserving mining of association rules[C] // Proceedings of the ACM Sigkdd International Conference on Knowledge Discovery and Data Mining(SIGKDD). New York: ACM, 2002: 217-228. [8] RUBINSTEIN B I P, BARTLETT P L, LING H, et al. Learning in a large function space: privacy-preserving mechanisms for SVM learning[J]. Eprint Arxiv, 2009, 4. [9] NISSIM K, RASKHODNIKOVA S, SMITH A. Smooth sensitivity and sampling in private data analysis[C] // Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing. New York: ACM, 2007: 75-84. [10] FRIEDMAN A, SCHUSTER A. Data mining with differential privacy[C] // Proceedings of the 16th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010: 493-502. [11] MOHAMMED N, CHEN R, FUNG B C M, et al. Differentially private data release for data mining[C] // Proceedings of the 17th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2011: 493-501. [12] BHASKAR R, LAXMAN S, SMITH A, et al. Discovering frequent patterns in sensitive data[C] // Proceedings of the 16th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010: 503-512. [13] DING B, WINSLETT M, HAN J, et al. Differentially private data cubes: optimizing noise sources and consistency[C] // Proceedings of the 2011 ACM Sigmod International Conference on Management of Data. New York: ACM, 2011: 217-228. [14] CHAUDHURI K, MONTELEONI C. Privacy-preserving logistic regression[J]. Advances in Neural Information Processing Systems, 2008: 289-296. [15] KAMALIKA CHAUDHURI, CLAIRE MONTELEONI, ANAND D S. Differentially private empirical risk minimization[J]. Computer Science, 2011, 12(2):1069-1109. [16] ADAM N R, WORTMAN J C. Security-control methods for statistical databases[C] // A Comparison Study. ACM Computing Surveys, 1989, 21(4):515-556. [17] FIENBERG S E, MCINTYRE J. Data swapping: variations on a theme by dalenius and reiss[C] // Proceedings of Privacy in Statistical Databases: Casc Project International Workshop. Spain: Springer, 2004: 38-42. [18] PINKAS B. Cryptographic techniques for privacy-preserving data mining[J]. Acm Sigkdd Explorations Newsletter, 2003, 4(2):12-19. [19] AGRAWAL R, SRIKANT R. Privacy preserving data mining[C] // Proceedings of the 2000 ACM Sigmod International Conference on Management of Data. New York: Springer, 2000, 29(2):439-450. [20] SWEENEY L. k-anonymity: a model for protecting privacy[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2012, 10(5):557-570. [21] MACHANNAVAJJHALA A, GEHRKE J, KIFER D, et al. l-diversity: privacy beyond k-anonymity[C] // Proceedings of the International Conference on Data Engineering. IEEE, 2006: 24-24. [22] LI N, LI T, VENKATASUBRAMANIAN S. t-closeness: privacy beyond k-anonymity and l-diversity[C] // Proceedings of the IEEE International Conference on Data Engineering(ICDE). Istanbul: IEEE, 2007: 106-115. [23] WONG C W, LI J, FU W C, et al. (a-k)-anonymity: an enhanced k-anonymity model for privacy preserving data publishing[C] // Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2006: 754-759. [24] XIAO X, TAO Y. m-invariance: towards privacy preserving re-publication of dynamic datasets[C] // Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2007: 689-700. [25] 熊平, 朱天清, 王晓峰. 差分隐私保护及其应用[J]. 计算机学报, 2014,1(37):101-122. XIONG Ping, ZHU Tianqing, WANG Xiaofeng. A survey on differential privacy and applications[J]. Chinese Journal of Computers, 2014,1(37):101-122. [26] DWORK C. Differential privacy[C] // Proceedings of the 33rd International Conference on Automata, Languages and Programming-Volume Part II. Berlin: Springer-Verlag, 2006: 1-12. [27] DWORK C. Differential privacy: a survey of results[C] // Proceedings of the 5th International Conference on Theory and Applications of Models of Computation. Berlin: Springer-Verlag, 2008: 1-19. [28] NISSIM K, RASKHODNIKOVA S, SMITH A. Smooth sensitivity and sampling in private data analysis[C] // Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing. New York: ACM, 2007: 75-84. [29] DWORK C, MCSHERRY F, NISSIM K. Calibrating noise to sensitivity in private data analysis[C] // Proceedings of the Third Conference on Theory of Cryptography. Berlin: Springer-Verlag, 2006: 265-284. [30] MCSHERRY F, TALWAR K. Mechanism design via differential privacy[C] // Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science(FOCS). Washington: IEEE, 2007: 94-103. [31] BHASKAR R, LAXMAN S, SMITH A, et al. Discovering frequent patterns in sensitive data[C] // Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010: 503-512. [32] LI N, QARDAJA W, SU D, et al. PrivBasis: frequent itemset mining with differential privacy[C] // Proceedings of the VLDB Endowment VLDB Endowment Hompage Archive. New York: ACM, 2012: 1340-1351. [33] 张啸剑, 王淼, 孟小峰. 差分隐私保护下一种精确挖掘top-k频繁模式方法[J]. 计算机研究与发展,2014,51(1):104-114. ZHANG Xiaojian, WANG Miao, MENG Xiaofeng, et al. An accurate method for mining top-k frequent pattern under differential privacy[J]. Journal of Computer Research and Development, 2014, 51(1):104-114. [34] HAN J, PEI J, YIN Y, et al. Mining frequent patterns without candidate generation: a frequent-pattern tree approach[J]. Data Mining and Knowledge Discovery, 2004, 8(1):53-87. [35] HAN X, WANG M, ZHANG X, et al. Differentially private top-k query over mapreduce[C] // Proceedings of the Forth International Workshop on Cloud Data Management. New York: ACM, 2012: 25-32. [36] XIANG C, SEN S, SHENG Z X, et al. DP-Apriori: a differentially private frequent itemset mining algorithm based on transaction splitting[J]. Computers and Security, 2015, 50:74-90. [37] BLUM A, DWORK C, MCSHERRY F, et al. Practiacal privacy: the sulq framework[C] // Proceedings of the 24th ACM Sigact-Sigmod-Sigart Symposium on Principles of Databases Systems(PODS). New York: ACM, 2005: 128-138. [38] MCSHERRY F. Privacy integrated queries: an extensible platform for privacy-preserving data analysis[C] // Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2009: 10-30. [39] 赵格, 康海燕. 基于差分隐私的电子商务隐私保护数据发布[J]. 物流工程与管理, 2014, 36(11):119-122. ZHAO Ge, KANG Haiyan. E-commerce privacy protection data release based on differential privacy[J]. Logistics Engineering and Management, 2014, 36(11):119-122. [40] MOHAMMED N, CHEN R, FUNG B C M, et al. Differentially private data release for data mining[C] // Proceedings of the 17th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2011: 493-501. [41] ZHU T, XIONG P, XIANG Y, et al. An effective differentially private data releasing algorithm for decision tree[C] // Proceedings of the 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications. Washington: IEEE Computer Society, 2013: 388-395. [42] JAGANNATHAN G, POLLAOPAKKAMNATT K, WRIGHT R N. A practical differentially private random decision tree classifier[J]. Transaction on Data Privacy, 2012, 5(1):273-295. [43] VAIDYA J, SHAFIQ B, FAN W, et al. A random decision tree framework for privacy preserving data mining[J]. IEEE Transactions on Dependable and Secure Computing, 2014, 11(5):399-411. [44] PATIL A, SINGH S. Differential private random forest[C] // International Conference on. Advances in Computing, Communications and Informatics, 2014: 2623-2630. [45] BOJARSKI M, CHOROMANSKA A, CHOROMANSKI K, et al. Differentially-and non-differentially-private random decision trees[J]. Eprint Arxiv, 2014. [46] FELDMAN D, FIAT A, KAPLAN H, et al. Private coresets[C] // Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing. New York: ACM, 2009: 361-370. [47] DWORK C. A firm foundation for private data analysis[J]. Communications of the ACM, 2011, 54(1):86-95. [48] 李杨, 郝志峰, 温雯,等. 差分隐私保护k-means聚类方法研究[J]. 计算机科学, 2013, 40(3):287-290. LI Yang, HAO Zhifeng, WEN Wen, et al. Research on differential privacy preserving k-means clustering[J]. Computer Science, 2013, 40(3):287-290. [49] 张啸剑, 孟晓峰. 面向数据发布和分析的差分隐私保护[J]. 计算机学报, 2014, 37(4):927-949. ZHANG Xiaojian, MENG Xiaofeng. Differential privacy in data publiction and analysis[J]. Chinese Journal of Computers, 2014, 37(4):927-949. [50] FAN LIYUE, XIONG Li. An adaptive approach to real-time aggregate monitoring with differential privacy[J]. IEEE Transactions on Knowledge & Data Engineering, 2013, 26(9):2094-2106. [51] CHAN T H H, SHI E, SONG D. Private and continual release of statistics[J]. ACM Transactions on Information & System Security, 2010, 14(3):405-417. [52] 冯登国,张敏,李昊.大数据安全与隐私保护.计算机学报,2014,1(37):246-258. FENG Dengguo, ZHANG Min, LI Hao. Big data security and privacy protection[J]. Chinese Journal of Computers, 2014, 1(37):246-258. [53] SHRIVASTVA KMP, RIZVI MA, SINGH S. Big data privacy based on differential privacy a hope for big data[C] // Proceedings of the 6th International Conference on Computational Intelligence & Communication Networks. India: Bhopal, 2014: 776-781. |
[1] | YAN Yan, HAO Xiao-hong. Differential privacy partitioning algorithm based on adaptive density grids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 12-22. |
[2] | LI Yan-ping, QI Yan-jiao, ZHANG Kai, WEI Xu-guang. Multi-authority and revocable attribute-based encryption scheme [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 75-84. |
[3] | DING Yi-tao, YANG Hai-bin, YANG Xiao-yuan, ZHOU Tan-ping. A reversible image data hiding scheme in Homomorphic encrypted domain [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 104-110. |
[4] | BI Xiao-di, LIANG Ying, SHI Hong-zhou, TIAN Hui. Aparameterized location privacy protection method based on two-level Anonymity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(5): 75-84. |
[5] | LIU Xin, XU Qiu-liang, ZHANG Bo. Cooperative group signature scheme with controllable linkability [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(9): 18-35. |
[6] | GUO Hua-long, REN Xue-fang, ZHANG Ling. Relationships between dynamic data mining and P-augmented matrix [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 105-110. |
[7] | REN Xue-fang, ZHANG Ling. Perturbation theorems of inverse P-sets and perturbation-based data mining [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 54-60. |
[8] | WU Zhi-jun,SHEN Dan-dan. Architecture and key technologies of network-enabled next generation global flight tracking based on information integration and sharing [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 1-6. |
[9] | ZHANG Ling, REN Xue-fang. Surplus-deficient theorem of cardinal number and data internal-outer mining-separation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 90-94. |
[10] | ZHANG Jing, XUE Leng, CUI Yi, RONG Hui, WANG Jian-ping. Modeling and evaluation of a dual chaotic encryption algorithm for WSN [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(03): 1-5. |
[11] | KANG Hai-yan, YANG Kong-yu, CHEN Jian-ming. A method of personalized privacy preservation based on K-anonymization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(09): 142-149. |
[12] | HUANG Jing-wen. uzzy group decision making for information security risk factors analysis [J]. J4, 2012, 47(11): 45-49. |
[13] | ZHANG Wen-dong1, YIN Jin-huan1, JIA Xiao-fei2, HUANG Chao1, YUAN Yan-mei1. Research of a frequent itemsets mining algorithm based on vector [J]. J4, 2011, 46(3): 31-34. |
[14] | YE Ming-quan1,2, HU Xue-gang1, WU Chang-rong3. Privacy preserving attribute reduction based on conditional information entropy over vertically partitioned multi-decision tables [J]. J4, 2010, 45(9): 14-19. |
[15] | SHU Guo-Gong, DAN Bing, GENG Xiao-Na. A clustering algorithm based on feature point selection [J]. J4, 2009, 44(9): 40-42. |
|