JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (8): 15-21.doi: 10.6040/j.issn.1671-9352.0.2015.530
Previous Articles Next Articles
DONG Jiong, CAO Xiao-hong*
CLC Number:
[1] WEYL H V.(¨overU)ber beschränkte quadratische Formen, deren differenz vollstetig ist[J]. Rendiconti Del Circolo Matematico Di Palermo, 1909, 27(1):373-392. [2] BERBERIAN S K. An extension of Weyls theorem to a class of not necessarily normal operators[J]. Michigan Mathematical Journal, 1969, 16(3):273-279. [3] COBURN L A. Weyls theorem for nonnormal operators[J]. Michigan Mathematical Journal, 1966, 13(3):285-288. [4] ISTRATESCU V I. On Weyls spectrum of an operator. I[J]. Revue Roumaine Des Mathematiques Pures Et Appliquees, 1972, 17:1049-1059. [5] OBERAI K K, OBERAI K K. On the Weyl spectrum[J]. Illinois Journal of Mathematics, 1974, 18(1974):208-212. [6] JI Y Q. Quasitriangular+small compact=strongly irreducible[J]. Transactions of the American Mathematical Society, 1999, 351(11):4657-4673. [7] HERRERO D A. Economical compact perturbations. II. Filling in the holes.[J]. J Operator Theory, 1988(1):25-42. [8] LI Chunguang, ZHU Sen, FENG Youling. Weyls theorem for functions of operators and approximation[J]. Integral Equations & Operator Theory, 2010, 67(4):481-497. [9] RADJAVI H, ROSENTHAL P. Invariant subspaces[M]. 2nd ed. New York: Dover Publications, 2003. [10] HERRERO D A. Approximation of Hilbert space operators[M]. Harlow: Longman Scientific and Technical, 1989. |
[1] | CUI Miao-miao, WANG Bi-yu, CAO Xiao-hong. A note on operator matrixs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 56-61. |
[2] | WANG Bi-yu, CAO Xiao-hong*. The perturbation for the Browder’s theorem of operator matrix#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 90-95. |
[3] | YU Wei, CAO Xiao-hong*. Topological uniform descent and the single valued extension property [J]. J4, 2013, 48(4): 10-14. |
[4] | ZHAO Hai-yan, CAO Xiao-hong*. The stability of the property (ω1) for the Helton class operators [J]. J4, 2013, 48(4): 15-19. |
[5] | SHI Wei-juan, CAO Xiao-hong*. Judgement for the stability of Weyl′s theorem [J]. J4, 2012, 47(4): 24-27. |
|