JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (4): 9-18.doi: 10.6040/j.issn.1671-9352.0.2015.123
Previous Articles Next Articles
WANG Jie, QU Meng, SHU Li-sheng
CLC Number:
[1] LU Shanzhen, YANG Dachun. The central BMO spaces and Littlewood-Paley operators[J]. Approx Theory Appl, 1995, 11(3):72-94. [2] LI Xinwei, YANG Dachun. Boundedness of some sublinear operators on Herz spaces[J]. Illinois Journal of Mathematics, 1996, 40(3):484-501. [3] LIU Lanzhe, LU Shanzhen, XU Jingshi. Boundedness of commutators of Littlewood-Paley operators[J]. Andvances in Mathematics, 2003, 32(4):473-480. [4] 陈杰诚,丁勇,范大山.带变量核的Littlewood-Paley算子[J]. 中国科学:A辑数学, 2006, 36(1):38-51. CHEN Jiecheng, DING Yong, FAN Dashan.Littlewood-Paley operator with variable kernel[J].Science in China: Series A Mathematics, 2006, 36(1):38-51. [5] 陈艳萍,丁勇.广义Morrey空间上带变量核的的Littlewood-Paley算子[J]. 数学物理学报, 2009, 29A(3):630-642. CHEN Yanping, DING Yong. Littlewood-Paley operator with variable kernel on generalized Morrey spaces[J]. Acta Mathematica: Scientia-Chinese series, 2009, 29A(3):630-642. [6] XUE Qingying, DING Yong. Weighted estimates for multilinear commutators of the Littlewood-Paley operators[J].Science in China: Series A Mathematics, 2009, 52(9):1849-1868. [7] Kovácik O, Rákosník J. On spaces Lp(x) and Wk,p(x)[J]. Czechoslovak Math J, 1991, 41(4):592-618. [8] CRUZ-URIBE SFO D, FIORENZA A, MARTELL M J, et al. The boundedness of classical operators on variable Lp spaces[J]. Ann Acad Sci Fenn Math, 2006, 31(1):239-264. [9] WANG Hongbin, FU Zunwei, LIU Zongguang. Higher-order commutators of Marcinkiewicz integrals on variable Lebesgue spaces[J]. Acta Math Sci, 2012, 32A(6):1092-1101. [10] IZUKI M. Herz and amalgam spaces with variable exponent, the Haar wavelets and greediness of the wavelet system[J]. East Journal on Approximations, 2009, 15(1):87-109. [11] IZUKI M. Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent[J]. Rend Circ Mat Palermo, 2010, 59(3):461-472. [12] ALMEIDA A, DRIHEM D. Maximal, potential and singular type operators on Herz spaces with variable exponents[J]. J Math Anal Appl, 2012, 394(2):781-795. [13] LU Yan, ZHU Yueping. Boundedness of multilinear Calderón-Zygmund singular operators on Morrey-Herz spaces with variable exponents[J]. Acta Mathematica Sinica: English Series, 2014, 30(7):1180-1194. [14] WANG Lijuan, TAO Shuangping. Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with exponent[J]. Journal of Inequalities and Applications, 2014, 2014(1):227. [15] DONG Baohua, XU Jingshi. New Herz type Besov and Triebel-Lizorkin spaces with variable exponents [J]. J of Function Spaces and Applications, 2012, 27. pages, id: 384593. [16] IZUKI M. Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent[J]. Glasnik Mat, 2010, 45(2):475-503. [17] WANG Liwei. Marcinkiewicz integral operators and commutators on Herz spaces with variable exponents[J]. J Function Space and Applications, 2014, id:430635. |
|