JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (4): 43-48.doi: 10.6040/j.issn.1671-9352.0.2015.114
Previous Articles Next Articles
LUO Gao-jun, ZHOU Liang, ZUO Ke-zheng*
CLC Number:
[1] WANG Guorong, WEI Yimin, QIAO Sanzheng. Generalized inverses: theory and computations[M]. Beijing: Science Press, 2004. [2] BEN-ISRAEL A, GREVILLE T N E. Generalized inverses[M]. New York: Springer-Verlag, 2003. [3] GROB J, TRENKLER G. Generalized and hypergeneralized projectors[J]. Linear Algebra and Its Applications, 1997, 264:463-474. [4] BAKSALARY J K, LIU Xiaoji. An alternative characterization of generalized projectors [J]. Linear Algebra and Its Applications, 2004, 388:61-65. [5] BAKSALARY J K, BAKSALARY O M, LIU Xiaoji. Further properties of generalized and hypergeneralized projectors [J]. Linear Algebra and Its Applications, 2004, 389:295-303. [6] BAKSALARY J K, BAKSALARY O M, LIU Xiaoji. Further results on generalized and hypergeneralized projectors[J]. Linear Algebra and Its Applications, 2008, 429:1038-1050. [7] BAKSALARY O M. Revisitation of generalized and hypergeneralized projectors[C] // Statistical Inference, Econometric Analysis and Matrix Algebra: Festschrift in Honour of G(¨overo)tz Trenkler. New York: Springer-Verlag, 2008: 317-324. [8] HARTWIG R E, SPINDELB(¨overO)CK K. Matrices for which A* and A† commute[J]. Linear and Multilinear Algebra, 1984, 14:241-256. [9] BAKSALARY O M, TRENKLER G. On a generalized core inverse[J]. Applied Mathematics and Computation, 2014, 236:450-457. [10] BAKSALARY O M, STYAN G P H, TRENKLER G. On a matrix decomposition of Hartwig and Spindelb(¨overo)ck[J]. Linear Algebra and Its Applications, 2009, 430(10):2798-2812. |
[1] | LI Jing, HE Cheng-yuan. A fast algorithm for finding the inverse and generlized inverse of the first and the last difference circulant matrices [J]. J4, 2013, 48(6): 96-99. |
[2] | . The necessary and sufficient condition for the existence of limit lim λ→0 Y(λI+AY)-1 [J]. J4, 2009, 44(6): 10-13. |
|